These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34454980)

  • 21. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 22. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and optimization of genetic toolboxes for a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973.
    Li S; Sun T; Xu C; Chen L; Zhang W
    Metab Eng; 2018 Jul; 48():163-174. PubMed ID: 29883802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved CRISPR/Cas9 Tools for the Rapid Metabolic Engineering of
    Wilding-Steele T; Ramette Q; Jacottin P; Soucaille P
    Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33918190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A piggyBac-based toolkit for inducible genome editing in mammalian cells.
    Schertzer MD; Thulson E; Braceros KCA; Lee DM; Hinkle ER; Murphy RM; Kim SO; Vitucci ECM; Calabrese JM
    RNA; 2019 Aug; 25(8):1047-1058. PubMed ID: 31101683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A dual-plasmid CRISPR/Cas9-based method for rapid and efficient genetic disruption in
    Neo DM; Clatworthy AE; Hung DT
    J Bacteriol; 2024 Mar; 206(3):e0033523. PubMed ID: 38319218
    [No Abstract]   [Full Text] [Related]  

  • 27. Development of a
    Sun X; Li S; Zhang F; Sun T; Chen L; Zhang W
    ACS Synth Biol; 2021 Aug; 10(8):1920-1930. PubMed ID: 34370452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptation and application of a two-plasmid inducible CRISPR-Cas9 system in Clostridium beijerinckii.
    Diallo M; Hocq R; Collas F; Chartier G; Wasels F; Wijaya HS; Werten MWT; Wolbert EJH; Kengen SWM; van der Oost J; Ferreira NL; López-Contreras AM
    Methods; 2020 Feb; 172():51-60. PubMed ID: 31362039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO₂.
    Yu J; Liberton M; Cliften PF; Head RD; Jacobs JM; Smith RD; Koppenaal DW; Brand JJ; Pakrasi HB
    Sci Rep; 2015 Jan; 5():8132. PubMed ID: 25633131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit.
    Mougiakos I; Bosma EF; de Vos WM; van Kranenburg R; van der Oost J
    Trends Biotechnol; 2016 Jul; 34(7):575-587. PubMed ID: 26944793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photosynthetic production of α-farnesene by engineered Synechococcus elongatus UTEX 2973 from carbon dioxide.
    Rautela A; Yadav I; Gangwar A; Chatterjee R; Kumar S
    Bioresour Technol; 2024 Mar; 396():130432. PubMed ID: 38346593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 33. EasyCloneYALI: CRISPR/Cas9-Based Synthetic Toolbox for Engineering of the Yeast Yarrowia lipolytica.
    Holkenbrink C; Dam MI; Kildegaard KR; Beder J; Dahlin J; Doménech Belda D; Borodina I
    Biotechnol J; 2018 Sep; 13(9):e1700543. PubMed ID: 29377615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable Repression of Key Photosynthetic Processes Using Cas12a CRISPR Interference in the Fast-Growing Cyanobacterium
    Knoot CJ; Biswas S; Pakrasi HB
    ACS Synth Biol; 2020 Jan; 9(1):132-143. PubMed ID: 31829621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of the balance of fatty acid production and secretion is crucial for enhancement of growth and productivity of the engineered mutant of the cyanobacterium Synechococcus elongatus.
    Kato A; Use K; Takatani N; Ikeda K; Matsuura M; Kojima K; Aichi M; Maeda S; Omata T
    Biotechnol Biofuels; 2016; 9():91. PubMed ID: 27110287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering.
    Mougiakos I; Orsi E; Ghiffary MR; Post W; de Maria A; Adiego-Perez B; Kengen SWM; Weusthuis RA; van der Oost J
    Microb Cell Fact; 2019 Nov; 18(1):204. PubMed ID: 31767004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha.
    Numamoto M; Maekawa H; Kaneko Y
    J Biosci Bioeng; 2017 Nov; 124(5):487-492. PubMed ID: 28666889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.