These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 34454980)
41. Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India. Jaiswal D; Sengupta A; Sohoni S; Sengupta S; Phadnavis AG; Pakrasi HB; Wangikar PP Sci Rep; 2018 Nov; 8(1):16632. PubMed ID: 30413737 [TBL] [Abstract][Full Text] [Related]
42. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs. Lee HJ; Kim HJ; Lee SJ Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447 [TBL] [Abstract][Full Text] [Related]
43. Controlling Ratios of Plasmid-Based Double Cut Donor and CRISPR/Cas9 Components to Enhance Targeted Integration of Transgenes in Chinese Hamster Ovary Cells. Shin SW; Kim D; Lee JS Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673701 [TBL] [Abstract][Full Text] [Related]
44. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals. Mitsui R; Yamada R; Ogino H World J Microbiol Biotechnol; 2019 Jul; 35(7):111. PubMed ID: 31280424 [TBL] [Abstract][Full Text] [Related]
45. CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Gordon GC; Korosh TC; Cameron JC; Markley AL; Begemann MB; Pfleger BF Metab Eng; 2016 Nov; 38():170-179. PubMed ID: 27481676 [TBL] [Abstract][Full Text] [Related]
46. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology. Alagoz Y; Gurkok T; Zhang B; Unver T Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984 [TBL] [Abstract][Full Text] [Related]
47. Multiplexed CRISPR-Cas9-Based Genome Editing of Otoupal PB; Ito M; Arkin AP; Magnuson JK; Gladden JM; Skerker JM mSphere; 2019 Mar; 4(2):. PubMed ID: 30894433 [TBL] [Abstract][Full Text] [Related]
48. CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max.L). Al Amin N; Ahmad N; Wu N; Pu X; Ma T; Du Y; Bo X; Wang N; Sharif R; Wang P BMC Biotechnol; 2019 Jan; 19(1):9. PubMed ID: 30691438 [TBL] [Abstract][Full Text] [Related]
49. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628 [TBL] [Abstract][Full Text] [Related]
50. CRISPR based targeted genome editing of Chlamydomonas reinhardtii using programmed Cas9-gRNA ribonucleoprotein. Dhokane D; Bhadra B; Dasgupta S Mol Biol Rep; 2020 Nov; 47(11):8747-8755. PubMed ID: 33074412 [TBL] [Abstract][Full Text] [Related]
51. Rapid and efficient generation of GFP-knocked-in Drosophila by the CRISPR-Cas9-mediated genome editing. Kina H; Yoshitani T; Hanyu-Nakamura K; Nakamura A Dev Growth Differ; 2019 May; 61(4):265-275. PubMed ID: 31037730 [TBL] [Abstract][Full Text] [Related]
52. Engineering a Xylose-Utilizing Yao J; Wang J; Ju Y; Dong Z; Song X; Chen L; Zhang W ACS Synth Biol; 2022 Feb; 11(2):678-688. PubMed ID: 35119824 [TBL] [Abstract][Full Text] [Related]
53. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis. García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498 [TBL] [Abstract][Full Text] [Related]
55. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum. Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973 [TBL] [Abstract][Full Text] [Related]
56. Cpf1 Is A Versatile Tool for CRISPR Genome Editing Across Diverse Species of Cyanobacteria. Ungerer J; Pakrasi HB Sci Rep; 2016 Dec; 6():39681. PubMed ID: 28000776 [TBL] [Abstract][Full Text] [Related]
57. Efficient genome editing in Aspergillus niger with an improved recyclable CRISPR-HDR toolbox and its application in introducing multiple copies of heterologous genes. Dong H; Zheng J; Yu D; Wang B; Pan L J Microbiol Methods; 2019 Aug; 163():105655. PubMed ID: 31226337 [TBL] [Abstract][Full Text] [Related]
58. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Wang HX; Song Z; Lao YH; Xu X; Gong J; Cheng D; Chakraborty S; Park JS; Li M; Huang D; Yin L; Cheng J; Leong KW Proc Natl Acad Sci U S A; 2018 May; 115(19):4903-4908. PubMed ID: 29686087 [TBL] [Abstract][Full Text] [Related]
59. Gene editing in Plasmodium berghei made easy: Development of a CRISPR/Cas9 protocol using linear donor template and ribozymes for sgRNA generation. Deligianni E; Kiamos IS Mol Biochem Parasitol; 2021 Nov; 246():111415. PubMed ID: 34537287 [TBL] [Abstract][Full Text] [Related]
60. Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Lin PC; Zhang F; Pakrasi HB Sci Rep; 2020 Jan; 10(1):390. PubMed ID: 31942010 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]