These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 34455034)
21. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352 [TBL] [Abstract][Full Text] [Related]
22. Ultrasonic treatment can improve maize seed germination and abiotic stress resistance. Gong M; Kong M; Huo Q; He J; He J; Yan Z; Lu C; Jiang Y; Song J; Han W; Lv G BMC Plant Biol; 2024 Aug; 24(1):758. PubMed ID: 39112960 [TBL] [Abstract][Full Text] [Related]
23. Transcriptome Profiling of Maize ( Waititu JK; Cai Q; Sun Y; Sun Y; Li C; Zhang C; Liu J; Wang H Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34681032 [TBL] [Abstract][Full Text] [Related]
24. Maize ZmSRO1e promotes mesocotyl elongation and deep sowing tolerance by inhibiting the activity of ZmbZIP61. Qin L; Kong F; Wei L; Cui M; Li J; Zhu C; Liu Y; Xia G; Liu S J Integr Plant Biol; 2024 Aug; 66(8):1571-1586. PubMed ID: 38874204 [TBL] [Abstract][Full Text] [Related]
25. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Zhang P; Fan Y; Sun X; Chen L; Terzaghi W; Bucher E; Li L; Dai M Plant J; 2019 May; 98(4):697-713. PubMed ID: 30715761 [TBL] [Abstract][Full Text] [Related]
26. Transcriptomic profiling of the high-vigour maize (Zea mays L.) hybrid variety response to cold and drought stresses during seed germination. Li H; Yue H; Xie J; Bu J; Li L; Xin X; Zhao Y; Zhang H; Yang L; Wang J; Jiang X Sci Rep; 2021 Sep; 11(1):19345. PubMed ID: 34588562 [TBL] [Abstract][Full Text] [Related]
27. Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.). Cao L; Lu X; Wang G; Zhang P; Fu J; Wang Z; Wei L; Wang T Mol Genet Genomics; 2021 Nov; 296(6):1203-1219. PubMed ID: 34601650 [TBL] [Abstract][Full Text] [Related]
28. Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length. Zhang H; Ma P; Zhao Z; Zhao G; Tian B; Wang J; Wang G Theor Appl Genet; 2012 Jan; 124(1):223-32. PubMed ID: 22057118 [TBL] [Abstract][Full Text] [Related]
29. Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation. Kutschera U; Wang ZY Protoplasma; 2016 Jan; 253(1):3-14. PubMed ID: 25772679 [TBL] [Abstract][Full Text] [Related]
30. Physiological and biochemical effects of 24-Epibrassinolide on drought stress adaptation in maize ( Kumar B; Pal M; Yadava P; Kumar K; Langyan S; Jha AK; Singh I PeerJ; 2024; 12():e17190. PubMed ID: 38560461 [TBL] [Abstract][Full Text] [Related]
31. Maize ZmBES1/BZR1-5 Decreases ABA Sensitivity and Confers Tolerance to Osmotic Stress in Transgenic Sun F; Yu H; Qu J; Cao Y; Ding L; Feng W; Khalid MHB; Li W; Fu F Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32028614 [TBL] [Abstract][Full Text] [Related]
32. Integrated single-molecule real-time sequencing and RNA sequencing reveal the molecular mechanisms of salt tolerance in a novel synthesized polyploid genetic bridge between maize and its wild relatives. Li X; Wang X; Ma Q; Zhong Y; Zhang Y; Zhang P; Li Y; He R; Zhou Y; Li Y; Cheng M; Yan X; Li Y; He J; Iqbal MZ; Rong T; Tang Q BMC Genomics; 2023 Jan; 24(1):55. PubMed ID: 36717785 [TBL] [Abstract][Full Text] [Related]
33. Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.). Zhao C; Yang M; Wu X; Wang Y; Zhang R Plant Physiol Biochem; 2021 Nov; 168():128-142. PubMed ID: 34628174 [TBL] [Abstract][Full Text] [Related]
34. Ethephon-regulated maize internode elongation associated with modulating auxin and gibberellin signal to alter cell wall biosynthesis and modification. Zhang Y; Wang Y; Ye D; Xing J; Duan L; Li Z; Zhang M Plant Sci; 2020 Jan; 290():110196. PubMed ID: 31779899 [TBL] [Abstract][Full Text] [Related]
35. Transcriptome Analysis Revealed the Key Genes and Pathways Involved in Seed Germination of Maize Tolerant to Deep-Sowing. Wang Y; He J; Ye H; Ding M; Xu F; Wu R; Zhao F; Zhao G Plants (Basel); 2022 Jan; 11(3):. PubMed ID: 35161340 [TBL] [Abstract][Full Text] [Related]
36. Comparative Proteomics Analysis of the Seedling Root Response of Drought-sensitive and Drought-tolerant Maize Varieties to Drought Stress. Zeng W; Peng Y; Zhao X; Wu B; Chen F; Ren B; Zhuang Z; Gao Q; Ding Y Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31181633 [TBL] [Abstract][Full Text] [Related]
37. Regulation of the cellulose synthase-like gene family by light in the maize mesocotyl. van Erp H; Walton JD Planta; 2009 Mar; 229(4):885-97. PubMed ID: 19130077 [TBL] [Abstract][Full Text] [Related]
38. Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves. Hu Y; Li WC; Xu YQ; Li GJ; Liao Y; Fu FL J Appl Genet; 2009; 50(3):213-23. PubMed ID: 19638676 [TBL] [Abstract][Full Text] [Related]
39. Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses. Li Y; Wang X; Li Y; Zhang Y; Gou Z; Qi X; Zhang J Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32756433 [TBL] [Abstract][Full Text] [Related]
40. Identification and Fine Mapping of the Recessive Gene Li Q; Nie S; Li G; Du J; Ren R; Yang X; Liu B; Gao X; Liu T; Zhang Z; Zhao X; Li X; Nie Y; Wang B; Lin H; Ding H; Pan G Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055000 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]