These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34455304)

  • 1. Central role of metabolism in Trypanosoma cruzi tropism and Chagas disease pathogenesis.
    Liu Z; Ulrich vonBargen R; McCall LI
    Curr Opin Microbiol; 2021 Oct; 63():204-209. PubMed ID: 34455304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes.
    Shah-Simpson S; Lentini G; Dumoulin PC; Burleigh BA
    PLoS Pathog; 2017 Nov; 13(11):e1006747. PubMed ID: 29176805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of host-parasite-microbiome interactions reveals metabolic determinants of tropism and tolerance in Chagas disease.
    Hossain E; Khanam S; Dean DA; Wu C; Lostracco-Johnson S; Thomas D; Kane SS; Parab AR; Flores K; Katemauswa M; Gosmanov C; Hayes SE; Zhang Y; Li D; Woelfel-Monsivais C; Sankaranarayanan K; McCall LI
    Sci Adv; 2020 Jul; 6(30):eaaz2015. PubMed ID: 32766448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of Active Trans-Sialidase Genes Impairs Egress from Mammalian Host Cells and Generates Highly Attenuated Trypanosoma cruzi Parasites.
    Burle-Caldas GA; Dos Santos NSA; de Castro JT; Mugge FLB; Grazielle-Silva V; Oliveira AER; Pereira MCA; Reis-Cunha JL; Dos Santos AC; Gomes DA; Bartholomeu DC; Moretti NS; Schenkman S; Gazzinelli RT; Teixeira SMR
    mBio; 2022 Feb; 13(1):e0347821. PubMed ID: 35073735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implications of genetic variability of Trypanosoma cruzi for the pathogenesis of Chagas disease.
    Manoel-Caetano Fda S; Silva AE
    Cad Saude Publica; 2007 Oct; 23(10):2263-74. PubMed ID: 17891288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress-Induced Proliferation and Cell Cycle Plasticity of Intracellular
    Dumoulin PC; Burleigh BA
    mBio; 2018 Jul; 9(4):. PubMed ID: 29991586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The thermal proteome stability profile of Trypanosoma cruzi in epimastigote and trypomastigote life stages.
    Coutinho JVP; Rosa-Fernandes L; Mule SN; de Oliveira GS; Manchola NC; Santiago VF; Colli W; Wrenger C; Alves MJM; Palmisano G
    J Proteomics; 2021 Sep; 248():104339. PubMed ID: 34352427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions Between Trypanosoma cruzi the Chagas Disease Parasite and Naturally Infected Wild Mepraia Vectors of Chile.
    Campos-Soto R; Ortiz S; Cordova I; Bruneau N; Botto-Mahan C; Solari A
    Vector Borne Zoonotic Dis; 2016 Mar; 16(3):165-71. PubMed ID: 26771702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis.
    Parab AR; McCall LI
    Infect Immun; 2021 Mar; 89(4):. PubMed ID: 33526564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioluminescent imaging of Trypanosoma cruzi infection.
    Hyland KV; Asfaw SH; Olson CL; Daniels MD; Engman DM
    Int J Parasitol; 2008 Oct; 38(12):1391-400. PubMed ID: 18511053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chagas disease (Trypanosoma cruzi) and HIV co-infection in Colombia.
    Hernández C; Cucunubá Z; Parra E; Toro G; Zambrano P; Ramírez JD
    Int J Infect Dis; 2014 Sep; 26():146-8. PubMed ID: 25080354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parasite-Mediated Remodeling of the Host Microfilament Cytoskeleton Enables Rapid Egress of Trypanosoma cruzi following Membrane Rupture.
    Ferreira ER; Bonfim-Melo A; Burleigh BA; Costales JA; Tyler KM; Mortara RA
    mBio; 2021 Jun; 12(3):e0098821. PubMed ID: 34154418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in inferred genome-wide signals of positive selection during the evolution of Trypanosoma cruzi and Leishmania spp. lineages: A result of disparities in host and tissue infection ranges?
    Flores-López CA; Machado CA
    Infect Genet Evol; 2015 Jul; 33():37-46. PubMed ID: 25891283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of natural selection in shaping genetic variation in a promising Chagas disease drug target: Trypanosoma cruzi trans-sialidase.
    Gallant JP; Lima-Cordón RA; Justi SA; Monroy MC; Viola T; Stevens L
    Infect Genet Evol; 2018 Aug; 62():151-159. PubMed ID: 29684709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reevaluating the Trypanosoma cruzi proteomic map: The shotgun description of bloodstream trypomastigotes.
    Brunoro GV; Caminha MA; Ferreira AT; Leprevost Fda V; Carvalho PC; Perales J; Valente RH; Menna-Barreto RF
    J Proteomics; 2015 Feb; 115():58-65. PubMed ID: 25534883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The marsupial trypanosome Trypanosoma copemani is not an obligate intracellular parasite, although it adversely affects cell health.
    Cooper C; Andrew Thompson RC; Rigby P; Buckley A; Peacock C; Clode PL
    Parasit Vectors; 2018 Sep; 11(1):521. PubMed ID: 30236162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome-wide modulation of S-nitrosylation in Trypanosoma cruzi trypomastigotes upon interaction with the host extracellular matrix.
    Mule SN; Manchola NC; de Oliveira GS; Pereira M; Magalhães RDM; Teixeira AA; Colli W; Alves MJM; Palmisano G
    J Proteomics; 2021 Jan; 231():104020. PubMed ID: 33096306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-scale metabolic models highlight stage-specific differences in essential metabolic pathways in Trypanosoma cruzi.
    Shiratsubaki IS; Fang X; Souza ROO; Palsson BO; Silber AM; Siqueira-Neto JL
    PLoS Negl Trop Dis; 2020 Oct; 14(10):e0008728. PubMed ID: 33021977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Close encounters between Trypanosoma cruzi and the host mammalian cell: Lessons from genome-wide expression studies.
    Oliveira AER; Grazielle-Silva V; Ferreira LRP; Teixeira SMR
    Genomics; 2020 Jan; 112(1):990-997. PubMed ID: 31229555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Chagas disease, transforming growth factor beta neutralization reduces
    Ferreira RR; de Souza EM; Vilar-Pereira G; Degrave WMS; Abreu RDS; Meuser-Batista M; Ferreira NVC; Ledbeter S; Barker RH; Bailly S; Feige JJ; Lannes-Vieira J; de Araújo-Jorge TC; Waghabi MC
    Front Cell Infect Microbiol; 2022; 12():1017040. PubMed ID: 36530434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.