These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 34455361)
21. Objectively measured physical activity and bone strength in 9-year-old boys and girls. Sardinha LB; Baptista F; Ekelund U Pediatrics; 2008 Sep; 122(3):e728-36. PubMed ID: 18762509 [TBL] [Abstract][Full Text] [Related]
22. Frequency and duration of vigorous physical activity bouts are associated with adolescent boys' bone mineral status: A cross-sectional study. Marin-Puyalto J; Mäestu J; Gómez-Cabello A; Lätt E; Remmel L; Purge P; Vicente-Rodríguez G; Jürimäe J Bone; 2019 Mar; 120():141-147. PubMed ID: 30355511 [TBL] [Abstract][Full Text] [Related]
23. Activity intensity, assistive devices and joint replacement influence predicted remodelling in the proximal femur. Dickinson AS Biomech Model Mechanobiol; 2016 Feb; 15(1):181-94. PubMed ID: 26183472 [TBL] [Abstract][Full Text] [Related]
24. Integrated remodeling-to-fracture finite element model of human proximal femur behavior. Hambli R; Lespessailles E; Benhamou CL J Mech Behav Biomed Mater; 2013 Jan; 17():89-106. PubMed ID: 23122886 [TBL] [Abstract][Full Text] [Related]
25. Adaptations in cortical and trabecular bone in response to mechanical loading with and without weight bearing. Warner SE; Shea JE; Miller SC; Shaw JM Calcif Tissue Int; 2006 Dec; 79(6):395-403. PubMed ID: 17164974 [TBL] [Abstract][Full Text] [Related]
26. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Langton CM; Pisharody S; Keyak JH Med Eng Phys; 2009 Jul; 31(6):668-72. PubMed ID: 19230742 [TBL] [Abstract][Full Text] [Related]
27. Effects of weight-bearing exercise on bone health in girls: a meta-analysis. Ishikawa S; Kim Y; Kang M; Morgan DW Sports Med; 2013 Sep; 43(9):875-92. PubMed ID: 23754172 [TBL] [Abstract][Full Text] [Related]
28. Finite element modeling of proximal femur with quantifiable weight-bearing area in standing position. Yang P; Lin TY; Xu JL; Zeng HY; Chen D; Xiong BL; Pang FX; Chen ZQ; He W; Wei QS; Zhang QW J Orthop Surg Res; 2020 Sep; 15(1):384. PubMed ID: 32887611 [TBL] [Abstract][Full Text] [Related]
29. Strain energy in the femoral neck during exercise. Martelli S; Kersh ME; Schache AG; Pandy MG J Biomech; 2014 Jun; 47(8):1784-91. PubMed ID: 24746018 [TBL] [Abstract][Full Text] [Related]
30. Spatial heterogeneity in the response of the proximal femur to two lower-body resistance exercise regimens. Lang TF; Saeed IH; Streeper T; Carballido-Gamio J; Harnish RJ; Frassetto LA; Lee SM; Sibonga JD; Keyak JH; Spiering BA; Grodsinsky CM; Bloomberg JJ; Cavanagh PR J Bone Miner Res; 2014 Jun; 29(6):1337-45. PubMed ID: 24293094 [TBL] [Abstract][Full Text] [Related]
31. Prediction of denosumab effects on bone remodeling: A combined pharmacokinetics and finite element modeling. Hambli R; Boughattas MH; Daniel JL; Kourta A J Mech Behav Biomed Mater; 2016 Jul; 60():492-504. PubMed ID: 27026666 [TBL] [Abstract][Full Text] [Related]
32. High bone mass and altered relationships between bone mass, muscle strength, and body constitution in adolescent boys on a high level of physical activity. Nordström P; Thorsen K; Bergström E; Lorentzon R Bone; 1996 Aug; 19(2):189-95. PubMed ID: 8853864 [TBL] [Abstract][Full Text] [Related]
33. Three-year controlled, randomized trial of the effect of dose-specified loading and strengthening exercises on bone mineral density of spine and femur in nonathletic, physically active women. Sinaki M; Wahner HW; Bergstralh EJ; Hodgson SF; Offord KP; Squires RW; Swee RG; Kao PC Bone; 1996 Sep; 19(3):233-44. PubMed ID: 8873964 [TBL] [Abstract][Full Text] [Related]
34. The Osteogenic Effect of Impact-Loading and Resistance Exercise on Bone Mineral Density in Middle-Aged and Older Men: A Pilot Study. Bolam KA; Skinner TL; Jenkins DG; Galvão DA; Taaffe DR Gerontology; 2015; 62(1):22-32. PubMed ID: 26226987 [TBL] [Abstract][Full Text] [Related]
35. Load-transfer analysis after insertion of cementless anatomical femoral stem using pre- and post-operative CT images based patient-specific finite element analysis. Yamako G; Chosa E; Zhao X; Totoribe K; Watanabe S; Sakamoto T; Nakane N Med Eng Phys; 2014 Jun; 36(6):694-700. PubMed ID: 24629623 [TBL] [Abstract][Full Text] [Related]
36. Lean body mass and weight-bearing activity in the prediction of bone mineral density in physically active men. Rector RS; Rogers R; Ruebel M; Widzer MO; Hinton PS J Strength Cond Res; 2009 Mar; 23(2):427-35. PubMed ID: 19197207 [TBL] [Abstract][Full Text] [Related]
37. Peri-prosthetic bone remodeling and change in bone mineral density in the femur after cemented polished tapered stem implantation. Iwase T; Morita D; Takemoto G; Fujita H; Katayama N; Otsuka H Eur J Orthop Surg Traumatol; 2019 Jul; 29(5):1061-1067. PubMed ID: 30848380 [TBL] [Abstract][Full Text] [Related]
38. Effects of exercise and disuse on bone remodeling, bone mass, and biomechanical competence in spontaneously diabetic female rats. Verhaeghe J; Thomsen JS; van Bree R; van Herck E; Bouillon R; Mosekilde L Bone; 2000 Aug; 27(2):249-56. PubMed ID: 10913918 [TBL] [Abstract][Full Text] [Related]
39. Physical Activity for Strengthening Fracture Prone Regions of the Proximal Femur. Fuchs RK; Kersh ME; Carballido-Gamio J; Thompson WR; Keyak JH; Warden SJ Curr Osteoporos Rep; 2017 Feb; 15(1):43-52. PubMed ID: 28133707 [TBL] [Abstract][Full Text] [Related]
40. Human proximal femur bone adaptation to variations in hip geometry. Machado MM; Fernandes PR; Zymbal V; Baptista F Bone; 2014 Oct; 67():193-9. PubMed ID: 25016094 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]