These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 34455783)
1. Proteomic and Biological Analyses Reveal the Effect on Growth under Flooding Stress of Chickpea Irradiated with Millimeter Waves. Komatsu S; Maruyama J; Furuya T; Yin X; Yamaguchi H; Hitachi K; Miyashita N; Tsuchida K; Tani M J Proteome Res; 2021 Oct; 20(10):4718-4727. PubMed ID: 34455783 [TBL] [Abstract][Full Text] [Related]
2. Proteomic and Biochemical Approaches Elucidate the Role of Millimeter-Wave Irradiation in Wheat Growth under Flooding Stress. Komatsu S; Tsutsui Y; Furuya T; Yamaguchi H; Hitachi K; Tsuchida K; Tani M Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142271 [TBL] [Abstract][Full Text] [Related]
3. Membrane Proteomics to Understand Enhancement Effects of Millimeter-Wave Irradiation on Wheat Root under Flooding Stress. Komatsu S; Hamada K; Furuya T; Nishiuchi T; Tani M Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240359 [TBL] [Abstract][Full Text] [Related]
4. Millmeter-wave irradiation regulates mRNA-expression and the ubiquitin-proteasome system in wheat exposed to flooding stress. Komatsu S; Nishiuchi T; Furuya T; Tani M J Proteomics; 2024 Mar; 294():105073. PubMed ID: 38218429 [TBL] [Abstract][Full Text] [Related]
5. Proteomic Analysis of Irradiation with Millimeter Waves on Soybean Growth under Flooding Conditions. Zhong Z; Furuya T; Ueno K; Yamaguchi H; Hitachi K; Tsuchida K; Tani M; Tian J; Komatsu S Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31940953 [TBL] [Abstract][Full Text] [Related]
6. Proteomic and Biochemical Analyses of the Mechanism of Tolerance in Mutant Soybean Responding to Flooding Stress. Komatsu S; Yamaguchi H; Hitachi K; Tsuchida K; Kono Y; Nishimura M Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445752 [TBL] [Abstract][Full Text] [Related]
7. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress. Wang X; Li F; Chen Z; Yang B; Komatsu S; Zhou S J Proteomics; 2021 Feb; 232():104064. PubMed ID: 33276190 [TBL] [Abstract][Full Text] [Related]
8. Proteomic analysis of the flooding tolerance mechanism in mutant soybean. Komatsu S; Nanjo Y; Nishimura M J Proteomics; 2013 Feb; 79():231-50. PubMed ID: 23313221 [TBL] [Abstract][Full Text] [Related]
9. Characterization of proteins in soybean roots under flooding and drought stresses. Oh M; Komatsu S J Proteomics; 2015 Jan; 114():161-81. PubMed ID: 25464361 [TBL] [Abstract][Full Text] [Related]
10. Organ-specific proteomics of soybean seedlings under flooding and drought stresses. Wang X; Khodadadi E; Fakheri B; Komatsu S J Proteomics; 2017 Jun; 162():62-72. PubMed ID: 28435105 [TBL] [Abstract][Full Text] [Related]
11. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress. Yin X; Sakata K; Komatsu S J Proteome Res; 2014 Dec; 13(12):5618-34. PubMed ID: 25316100 [TBL] [Abstract][Full Text] [Related]
12. Plant-derived smoke enhances plant growth through ornithine-synthesis pathway and ubiquitin-proteasome pathway in soybean. Zhong Z; Kobayashi T; Zhu W; Imai H; Zhao R; Ohno T; Rehman SU; Uemura M; Tian J; Komatsu S J Proteomics; 2020 Jun; 221():103781. PubMed ID: 32294531 [TBL] [Abstract][Full Text] [Related]
13. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses. Wang X; Oh M; Sakata K; Komatsu S J Proteomics; 2016 Jan; 130():42-55. PubMed ID: 26376099 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of soybean hypocotyl during recovery after flooding stress. Khan MN; Sakata K; Komatsu S J Proteomics; 2015 May; 121():15-27. PubMed ID: 25818724 [TBL] [Abstract][Full Text] [Related]
15. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots. Khan MN; Sakata K; Hiraga S; Komatsu S J Proteome Res; 2014 Dec; 13(12):5812-28. PubMed ID: 25284625 [TBL] [Abstract][Full Text] [Related]
16. Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques. Yin X; Sakata K; Nanjo Y; Komatsu S J Proteomics; 2014 Jun; 106():1-16. PubMed ID: 24732726 [TBL] [Abstract][Full Text] [Related]
17. Proteomic and metabolomic analyses of soybean root tips under flooding stress. Komatsu S; Nakamura T; Sugimoto Y; Sakamoto K Protein Pept Lett; 2014; 21(9):865-84. PubMed ID: 24654851 [TBL] [Abstract][Full Text] [Related]
18. Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques. Nanjo Y; Skultety L; Ashraf Y; Komatsu S J Proteome Res; 2010 Aug; 9(8):3989-4002. PubMed ID: 20540568 [TBL] [Abstract][Full Text] [Related]
19. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. Komatsu S; Han C; Nanjo Y; Altaf-Un-Nahar M; Wang K; He D; Yang P J Proteome Res; 2013 Nov; 12(11):4769-84. PubMed ID: 23808807 [TBL] [Abstract][Full Text] [Related]
20. Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. Mustafa G; Sakata K; Hossain Z; Komatsu S J Proteomics; 2015 Jun; 122():100-18. PubMed ID: 25857275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]