These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 34455835)
1. Lattice Boltzmann simulations on the tumbling to tank-treading transition: effects of membrane viscosity. Guglietta F; Behr M; Biferale L; Falcucci G; Sbragaglia M Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200395. PubMed ID: 34455835 [TBL] [Abstract][Full Text] [Related]
2. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Tsubota K; Wada S; Liu H Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211 [TBL] [Abstract][Full Text] [Related]
3. Tank-treading and tumbling frequencies of capsules and red blood cells. Yazdani AZ; Kalluri RM; Bagchi P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046305. PubMed ID: 21599293 [TBL] [Abstract][Full Text] [Related]
4. Numerical study of viscosity and inertial effects on tank-treading and tumbling motions of vesicles under shear flow. Kim Y; Lai MC Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066321. PubMed ID: 23368052 [TBL] [Abstract][Full Text] [Related]
5. Tank-treading dynamics of red blood cells in shear flow: On the membrane viscosity rheology. Rezghi A; Zhang J Biophys J; 2022 Sep; 121(18):3393-3410. PubMed ID: 35986517 [TBL] [Abstract][Full Text] [Related]
6. Shear-induced gradient diffusivity of a red blood cell suspension: effects of cell dynamics from tumbling to tank-treading. Malipeddi AR; Sarkar K Soft Matter; 2021 Sep; 17(37):8523-8535. PubMed ID: 34499062 [TBL] [Abstract][Full Text] [Related]
7. Numerical study on the dynamics of primary cilium in pulsatile flows by the immersed boundary-lattice Boltzmann method. Cui J; Liu Y; Fu BM Biomech Model Mechanobiol; 2020 Feb; 19(1):21-35. PubMed ID: 31256275 [TBL] [Abstract][Full Text] [Related]
8. Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell. Tsubota K; Wada S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011910. PubMed ID: 20365402 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of a single red blood cell in simple shear flow. Sinha K; Graham MD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042710. PubMed ID: 26565275 [TBL] [Abstract][Full Text] [Related]
10. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Skotheim JM; Secomb TW Phys Rev Lett; 2007 Feb; 98(7):078301. PubMed ID: 17359066 [TBL] [Abstract][Full Text] [Related]
11. Effects of shear rate and suspending viscosity on deformation and frequency of red blood cells tank-treading in shear flows. Oulaid O; Saad AK; Aires PS; Zhang J Comput Methods Biomech Biomed Engin; 2016; 19(6):648-62. PubMed ID: 26158788 [TBL] [Abstract][Full Text] [Related]
12. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow. Levant M; Steinberg V Phys Rev E; 2016 Dec; 94(6-1):062412. PubMed ID: 28085369 [TBL] [Abstract][Full Text] [Related]
13. Oscillatory tank-treading motion of erythrocytes in shear flows. Dodson WR; Dimitrakopoulos P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011913. PubMed ID: 21867219 [TBL] [Abstract][Full Text] [Related]
14. Single-polymer dynamics of starch-like branched ring polymers in steady shear flow. Wang D; Wen X; Zhang D; Tan X; Tang J Int J Biol Macromol; 2023 Feb; 227():173-181. PubMed ID: 36535348 [TBL] [Abstract][Full Text] [Related]
15. In-Flow dynamics of an area-difference-energy spring-particle red blood cell model on non-uniform grids. Walsh B; Boyle FJ Comput Methods Biomech Biomed Engin; 2022 Jan; 25(1):52-64. PubMed ID: 34097528 [TBL] [Abstract][Full Text] [Related]
16. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow. Yazdani AZ; Bagchi P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026314. PubMed ID: 21929097 [TBL] [Abstract][Full Text] [Related]
17. Rheology of a dilute suspension of liquid-filled elastic capsules. Bagchi P; Kalluri RM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056320. PubMed ID: 20866335 [TBL] [Abstract][Full Text] [Related]
18. Instability of a liquid sheet with viscosity contrast in inertial microfluidics. Patel K; Stark H Eur Phys J E Soft Matter; 2021 Nov; 44(11):144. PubMed ID: 34845537 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of Individual Red Blood Cells Under Shear Flow: A Way to Discriminate Deformability Alterations. Atwell S; Badens C; Charrier A; Helfer E; Viallat A Front Physiol; 2021; 12():775584. PubMed ID: 35069240 [TBL] [Abstract][Full Text] [Related]
20. An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Zhang J; Johnson PC; Popel AS Phys Biol; 2007 Nov; 4(4):285-95. PubMed ID: 18185006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]