These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34455841)

  • 1. Validation and application of the lattice Boltzmann algorithm for a turbulent immiscible Rayleigh-Taylor system.
    Tavares HS; Biferale L; Sbragaglia M; Mailybaev AA
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200396. PubMed ID: 34455841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal-Spatial Evolution of Kinetic and Thermal Energy Dissipation Rates in a Three-Dimensional Turbulent Rayleigh-Taylor Mixing Zone.
    Guo W; Guo X; Wei Y; Zhang Y
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows.
    Wen ZX; Li Q; Yu Y; Luo KH
    Phys Rev E; 2019 Aug; 100(2-1):023301. PubMed ID: 31574674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphase flows of N immiscible incompressible fluids: Conservative Allen-Cahn equation and lattice Boltzmann equation method.
    Zheng L; Zheng S; Zhai Q
    Phys Rev E; 2020 Jan; 101(1-1):013305. PubMed ID: 32069624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of a double-front Rayleigh-Taylor system using a graphics-processing-unit-based high-resolution thermal lattice-Boltzmann model.
    Ripesi P; Biferale L; Schifano SF; Tripiccione R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043022. PubMed ID: 24827347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immiscible Rayleigh-Taylor turbulence: Implications for bacterial degradation in oil spills.
    Brizzolara S; Naudascher R; Rosti ME; Stocker R; Boffetta G; Mazzino A; Holzner M
    Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2311798121. PubMed ID: 38442164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability.
    Liang H; Li QX; Shi BC; Chai ZH
    Phys Rev E; 2016 Mar; 93(3):033113. PubMed ID: 27078453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved lattice Boltzmann model for immiscible multicomponent systems with high viscosity gradients at the interface.
    Bazarin RLM; Naaktgeboren C; Junqueira SLM; Philippi PC; Hegele LA
    Phys Rev E; 2024 Jul; 110(1-2):015303. PubMed ID: 39160946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability.
    Livescu D
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear and brute force stability of orthogonal moment multiple-relaxation-time lattice Boltzmann methods applied to homogeneous isotropic turbulence.
    Simonis S; Haussmann M; Kronberg L; Dörfler W; Krause MJ
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200405. PubMed ID: 34455847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressibility effects in Rayleigh-Taylor instability-induced flows.
    Gauthier S; Le Creurer B
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified phase-field-based lattice Boltzmann model for incompressible multiphase flows.
    Xu X; Hu Y; Dai B; Yang L; Han J; He Y; Zhu J
    Phys Rev E; 2021 Sep; 104(3-2):035305. PubMed ID: 34654078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A lattice Boltzmann model for reactive mixtures.
    Sawant N; Dorschner B; Karlin IV
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200402. PubMed ID: 34455843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A unified lattice Boltzmann model and application to multiphase flows.
    Luo KH; Fei L; Wang G
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200397. PubMed ID: 34455840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios.
    Fakhari A; Mitchell T; Leonardi C; Bolster D
    Phys Rev E; 2017 Nov; 96(5-1):053301. PubMed ID: 29347689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-field lattice Boltzmann model for interface tracking of a binary fluid system based on the Allen-Cahn equation.
    Zu YQ; Li AD; Wei H
    Phys Rev E; 2020 Nov; 102(5-1):053307. PubMed ID: 33327126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface tracking characteristics of color-gradient lattice Boltzmann model for immiscible fluids.
    Subhedar A; Reiter A; Selzer M; Varnik F; Nestler B
    Phys Rev E; 2020 Jan; 101(1-1):013313. PubMed ID: 32069649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice Boltzmann modeling and simulation of liquid jet breakup.
    Saito S; Abe Y; Koyama K
    Phys Rev E; 2017 Jul; 96(1-1):013317. PubMed ID: 29347180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved hybrid Allen-Cahn phase-field-based lattice Boltzmann method for incompressible two-phase flows.
    Liu X; Chai Z; Shi B
    Phys Rev E; 2023 Mar; 107(3-2):035308. PubMed ID: 37073063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.