These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34456233)

  • 1. Blue Widefield Images of Scanning Laser Ophthalmoscope Can Detect Retinal Ischemic Areas in Eyes With Diabetic Retinopathy.
    Horie S; Kukimoto N; Kamoi K; Igarashi-Yokoi T; Yoshida T; Ohno-Matsui K
    Asia Pac J Ophthalmol (Phila); 2021 Aug; 10(5):478-485. PubMed ID: 34456233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ability of MultiColor scanning laser ophthalmoscope to detect non-glaucomatous retinal nerve fiber layer defects in eyes with retinal diseases.
    Terasaki H; Sonoda S; Kakiuchi N; Shiihara H; Yamashita T; Sakamoto T
    BMC Ophthalmol; 2018 Dec; 18(1):324. PubMed ID: 30558574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Widefield Laser Ophthalmoscopy and ETDRS Retinal Area for Diabetic Retinopathy.
    Ashraf M; Hock KM; Cavallerano JD; Wang FL; Silva PS
    Ophthalmol Sci; 2022 Dec; 2(4):100190. PubMed ID: 36531579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blue Wavelength of Scanning Laser Ophthalmoscope Potentially Detects Arteriosclerotic Lesions in Diabetic Retinopathy.
    Horie S; Suzuki Y; Yoshida T; Ohno-Matsui K
    Diagnostics (Basel); 2024 Jul; 14(13):. PubMed ID: 39001301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Possibilities of multicolor confocal scanning laser ophthalmoscopy in complex diagnostics of severe proliferative diabetic retinopathy].
    Neroev VV; Zaytseva OV; Okhotsimskaya TD; Fadeeva VA; Verbitskaya VA
    Vestn Oftalmol; 2019; 135(2):22-31. PubMed ID: 31215531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different scan areas affect the detection rates of diabetic retinopathy lesions by high-speed ultra-widefield swept-source optical coherence tomography angiography.
    Li M; Mao M; Wei D; Liu M; Liu X; Leng H; Wang Y; Chen S; Zhang R; Zeng Y; Wang M; Li J; Zhong J
    Front Endocrinol (Lausanne); 2023; 14():1111360. PubMed ID: 36891051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Diabetic Retinopathy from Ultra-Widefield Scanning Laser Ophthalmoscope Images: A Multicenter Deep Learning Analysis.
    Tang F; Luenam P; Ran AR; Quadeer AA; Raman R; Sen P; Khan R; Giridhar A; Haridas S; Iglicki M; Zur D; Loewenstein A; Negri HP; Szeto S; Lam BKY; Tham CC; Sivaprasad S; Mckay M; Cheung CY
    Ophthalmol Retina; 2021 Nov; 5(11):1097-1106. PubMed ID: 33540169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between Early Treatment Diabetic Retinopathy Study 7-field retinal photos and non-mydriatic, mydriatic and mydriatic steered widefield scanning laser ophthalmoscopy for assessment of diabetic retinopathy.
    Rasmussen ML; Broe R; Frydkjaer-Olsen U; Olsen BS; Mortensen HB; Peto T; Grauslund J
    J Diabetes Complications; 2015; 29(1):99-104. PubMed ID: 25240716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-mydriatic ultrawide field scanning laser ophthalmoscopy compared with dilated fundal examination for assessment of diabetic retinopathy and diabetic macular oedema in Chinese individuals with diabetes mellitus.
    Szeto SKH; Wong R; Lok J; Tang F; Sun Z; Tso T; Lam TCH; Tham CC; Ng DS; Cheung CY
    Br J Ophthalmol; 2019 Sep; 103(9):1327-1331. PubMed ID: 30381391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NONCONFOCAL ULTRA-WIDEFIELD SCANNING LASER OPHTHALMOSCOPY: Polarization Artifacts and Diabetic Macular Edema.
    Ajlan RS; Barnard LR; Mainster MA
    Retina; 2020 Jul; 40(7):1374-1378. PubMed ID: 31181039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of multicolor scanning laser ophthalmoscopy and optical coherence tomography angiography for detection of microaneurysms in diabetic retinopathy.
    Sakono T; Terasaki H; Sonoda S; Funatsu R; Shiihara H; Uchino E; Yamashita T; Sakamoto T
    Sci Rep; 2021 Aug; 11(1):17017. PubMed ID: 34426631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield colour fundus photography and fluorescein angiography for detection of lesions in diabetic retinopathy.
    Cui Y; Zhu Y; Wang JC; Lu Y; Zeng R; Katz R; Vingopoulos F; Le R; Laíns I; Wu DM; Eliott D; Vavvas DG; Husain D; Miller JW; Kim LA; Miller JB
    Br J Ophthalmol; 2021 Apr; 105(4):577-581. PubMed ID: 32591347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning laser ophthalmoscopy in the retromode in diabetic macular oedema.
    Vujosevic S; Trento B; Bottega E; Urban F; Pilotto E; Midena E
    Acta Ophthalmol; 2012 Aug; 90(5):e374-80. PubMed ID: 22489939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of diabetic retinopathy using nonmydriatic ultra-widefield scanning laser ophthalmoscopy (Optomap) compared with ETDRS 7-field stereo photography.
    Kernt M; Hadi I; Pinter F; Seidensticker F; Hirneiss C; Haritoglou C; Kampik A; Ulbig MW; Neubauer AS
    Diabetes Care; 2012 Dec; 35(12):2459-63. PubMed ID: 22912430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonmydriatic widefield retinal imaging with an automatic white LED confocal imaging system compared with dilated ophthalmoscopy in screening for diabetic retinopathy.
    Borrelli E; Querques L; Lattanzio R; Cavalleri M; Grazioli Moretti A; Di Biase C; Signorino A; Gelormini F; Sacconi R; Bandello F; Querques G
    Acta Diabetol; 2020 Sep; 57(9):1043-1047. PubMed ID: 32246268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extent of diabetic macular edema by scanning laser ophthalmoscope in the retromode and its functional correlations.
    Vujosevic S; Pucci P; Daniele AR; Convento E; Pilotto E; Parrozzani R; Kotsafti O; Cavarzeran F; Midena E
    Retina; 2014 Dec; 34(12):2416-22. PubMed ID: 25207944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WF SS-OCTA for detecting diabetic retinopathy and evaluating the effect of photocoagulation on posterior vitreous detachment.
    Gong Y; Hu L; Wang L; Shao Y; Li X
    Front Endocrinol (Lausanne); 2022; 13():1029066. PubMed ID: 36531502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-automated algorithm using directional filter for the precise quantification of non-perfusion area on widefield swept-source optical coherence tomography angiograms.
    Garg I; Miller JB
    Quant Imaging Med Surg; 2023 Jun; 13(6):3688-3702. PubMed ID: 37284086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inference of Capillary Nonperfusion Progression on Widefield OCT Angiography in Diabetic Retinopathy.
    Yoshida M; Murakami T; Kawai K; Nishikawa K; Ishihara K; Mori Y; Tsujikawa A
    Invest Ophthalmol Vis Sci; 2023 Oct; 64(13):24. PubMed ID: 37847225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-widefield color fundus photography combined with high-speed ultra-widefield swept-source optical coherence tomography angiography for non-invasive detection of lesions in diabetic retinopathy.
    Li J; Wei D; Mao M; Li M; Liu S; Li F; Chen L; Liu M; Leng H; Wang Y; Ning X; Liu Y; Dong W; Zhong J
    Front Public Health; 2022; 10():1047608. PubMed ID: 36408020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.