BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 34456901)

  • 1. TLR-9 Plays a Role in
    Dias AA; Silva CAME; da Silva CO; Linhares NRC; Santos JPS; Vivarini AC; Marques MÂM; Rosa PS; Lopes UG; Berrêdo-Pinho M; Pessolani MCV
    Front Immunol; 2021; 12():657449. PubMed ID: 34456901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan aspartate-containing coat protein (CORO1A) suppresses Toll-like receptor signalling in Mycobacterium leprae infection.
    Tanigawa K; Suzuki K; Kimura H; Takeshita F; Wu H; Akama T; Kawashima A; Ishii N
    Clin Exp Immunol; 2009 Jun; 156(3):495-501. PubMed ID: 19438603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Mycobacterium leprae with human airway epithelial cells: adherence, entry, survival, and identification of potential adhesins by surface proteome analysis.
    Silva CA; Danelishvili L; McNamara M; Berredo-Pinho M; Bildfell R; Biet F; Rodrigues LS; Oliveira AV; Bermudez LE; Pessolani MC
    Infect Immun; 2013 Jul; 81(7):2645-59. PubMed ID: 23670556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA Sensing via TLR-9 Constitutes a Major Innate Immunity Pathway Activated during Erythema Nodosum Leprosum.
    Dias AA; Silva CO; Santos JP; Batista-Silva LR; Acosta CC; Fontes AN; Pinheiro RO; Lara FA; Machado AM; Nery JA; Sarno EN; Pereira GM; Pessolani MC
    J Immunol; 2016 Sep; 197(5):1905-13. PubMed ID: 27474073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thalidomide modulates Mycobacterium leprae-induced NF-κB pathway and lower cytokine response.
    Hernandez Mde O; Fulco Tde O; Pinheiro RO; Pereira Rde M; Redner P; Sarno EN; Lopes UG; Sampaio EP
    Eur J Pharmacol; 2011 Nov; 670(1):272-9. PubMed ID: 21925494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of human β-defensin-2 in pulmonary epithelial cells by Legionella pneumophila: involvement of TLR2 and TLR5, p38 MAPK, JNK, NF-κB, and AP-1.
    Scharf S; Hippenstiel S; Flieger A; Suttorp N; N'Guessan PD
    Am J Physiol Lung Cell Mol Physiol; 2010 May; 298(5):L687-95. PubMed ID: 20154223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression profiling specifies chemokine, mitochondrial and lipid metabolism signatures in leprosy.
    Guerreiro LT; Robottom-Ferreira AB; Ribeiro-Alves M; Toledo-Pinto TG; Rosa Brito T; Rosa PS; Sandoval FG; Jardim MR; Antunes SG; Shannon EJ; Sarno EN; Pessolani MC; Williams DL; Moraes MO
    PLoS One; 2013; 8(6):e64748. PubMed ID: 23798993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination.
    Polycarpou A; Holland MJ; Karageorgiou I; Eddaoudi A; Walker SL; Willcocks S; Lockwood DN
    Front Cell Infect Microbiol; 2016; 6():72. PubMed ID: 27458573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HLA and leprosy in the pre and postgenomic eras.
    Geluk A; Ottenhoff TH
    Hum Immunol; 2006 Jun; 67(6):439-45. PubMed ID: 16728267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STING-Dependent 2'-5' Oligoadenylate Synthetase-Like Production Is Required for Intracellular Mycobacterium leprae Survival.
    de Toledo-Pinto TG; Ferreira AB; Ribeiro-Alves M; Rodrigues LS; Batista-Silva LR; Silva BJ; Lemes RM; Martinez AN; Sandoval FG; Alvarado-Arnez LE; Rosa PS; Shannon EJ; Pessolani MC; Pinheiro RO; Antunes SL; Sarno EN; Lara FA; Williams DL; Ozório Moraes M
    J Infect Dis; 2016 Jul; 214(2):311-20. PubMed ID: 27190175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cell fate regulator NUPR1 is induced by Mycobacterium leprae via type I interferon in human leprosy.
    R Andrade P; Mehta M; Lu J; M B Teles R; Montoya D; O Scumpia P; Nunes Sarno E; Ochoa MT; Ma F; Pellegrini M; Modlin RL
    PLoS Negl Trop Dis; 2019 Jul; 13(7):e0007589. PubMed ID: 31344041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription factors STAT-4, STAT-6 and CREB regulate Th1/Th2 response in leprosy patients: effect of M. leprae antigens.
    Upadhyay R; Dua B; Sharma B; Natrajan M; Jain AK; Kithiganahalli Narayanaswamy B; Joshi B
    BMC Infect Dis; 2019 Jan; 19(1):52. PubMed ID: 30642265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic activation of the vitamin D antimicrobial pathway by M. leprae infection is inhibited by type I IFN.
    Zavala K; Gottlieb CA; Teles RM; Adams JS; Hewison M; Modlin RL; Liu PT
    PLoS Negl Trop Dis; 2018 Oct; 12(10):e0006815. PubMed ID: 30300363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hypothetical role for Notch signaling pathway in immunopathogenesis of leprosy.
    Serrano-Coll H; Acevedo-Saenz L; Cardona-Castro N
    Med Hypotheses; 2017 Nov; 109():162-169. PubMed ID: 29150278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type I Interferons, Autophagy and Host Metabolism in Leprosy.
    Toledo Pinto TG; Batista-Silva LR; Medeiros RCA; Lara FA; Moraes MO
    Front Immunol; 2018; 9():806. PubMed ID: 29755459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular localization and polymorphism of HLA class II restriction determinants defined by Mycobacterium leprae-reactive helper T cell clones from leprosy patients.
    Ottenhoff TH; Neuteboom S; Elferink DG; de Vries RR
    J Exp Med; 1986 Dec; 164(6):1923-39. PubMed ID: 2431092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Household Contacts of Leprosy Patients in Endemic Areas Display a Specific Innate Immunity Profile.
    van Hooij A; Tió-Coma M; Verhard EM; Khatun M; Alam K; Tjon Kon Fat E; de Jong D; Sufian Chowdhury A; Corstjens P; Richardus JH; Geluk A
    Front Immunol; 2020; 11():1811. PubMed ID: 32849645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of Mycobacterium leprae with the HaCaT human keratinocyte cell line: new frontiers in the cellular immunology of leprosy.
    Lyrio EC; Campos-Souza IC; Corrêa LC; Lechuga GC; Verícimo M; Castro HC; Bourguignon SC; Côrte-Real S; Ratcliffe N; Declercq W; Santos DO
    Exp Dermatol; 2015 Jul; 24(7):536-42. PubMed ID: 25828729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TLR6-driven lipid droplets in Mycobacterium leprae-infected Schwann cells: immunoinflammatory platforms associated with bacterial persistence.
    Mattos KA; Oliveira VG; D'Avila H; Rodrigues LS; Pinheiro RO; Sarno EN; Pessolani MC; Bozza PT
    J Immunol; 2011 Sep; 187(5):2548-58. PubMed ID: 21813774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycobacterium leprae induces a tolerogenic profile in monocyte-derived dendritic cells via TLR2 induction of IDO.
    Oliveira JAP; Gandini M; Sales JS; Fujimori SK; Barbosa MGM; Frutuoso VS; Moraes MO; Sarno EN; Pessolani MCV; Pinheiro RO
    J Leukoc Biol; 2021 Jul; 110(1):167-176. PubMed ID: 33040382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.