These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 34456954)

  • 1. Morphological, Physiological, and Molecular Responses of Sweetly Fragrant
    Liu X; Wan Y; An J; Zhang X; Cao Y; Li Z; Liu X; Ma H
    Front Plant Sci; 2021; 12():715683. PubMed ID: 34456954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floral Scent Chemistry of Luculia yunnanensis (Rubiaceae), a Species Endemic to China with Sweetly Fragrant Flowers.
    Li Y; Wan Y; Sun Z; Li T; Liu X; Ma H; Liu X; He R; Ma Y; Li Z
    Molecules; 2017 May; 22(6):. PubMed ID: 28587077
    [No Abstract]   [Full Text] [Related]  

  • 3. Identification of flowering genes in strawberry, a perennial SD plant.
    Mouhu K; Hytönen T; Folta K; Rantanen M; Paulin L; Auvinen P; Elomaa P
    BMC Plant Biol; 2009 Sep; 9():122. PubMed ID: 19785732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of global gene expression profiles during the flowering initiation process of Lilium × formolongi.
    Li YF; Zhang MF; Zhang M; Jia GX
    Plant Mol Biol; 2017 Jul; 94(4-5):361-379. PubMed ID: 28429252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gibberellic Acid Signaling Is Required to Induce Flowering of Chrysanthemums Grown under Both Short and Long Days.
    Dong B; Deng Y; Wang H; Gao R; Stephen GK; Chen S; Jiang J; Chen F
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28604637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential gene expression during floral transition in pineapple.
    Paull RE; Ksouri N; Kantar M; Zerpa-Catanho D; Chen NJ; Uruu G; Yue J; Guo S; Zheng Y; Wai CMJ; Ming R
    Plant Direct; 2023 Nov; 7(11):e541. PubMed ID: 38028646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of floral meristem identity genes in Arabidopsis.
    Simon R; Igeño MI; Coupland G
    Nature; 1996 Nov; 384(6604):59-62. PubMed ID: 8900276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic analysis of differentially expressed genes in the floral transition of the summer flowering chrysanthemum.
    Ren L; Liu T; Cheng Y; Sun J; Gao J; Dong B; Chen S; Chen F; Jiang J
    BMC Genomics; 2016 Aug; 17(1):673. PubMed ID: 27552984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods.
    Porri A; Torti S; Romera-Branchat M; Coupland G
    Development; 2012 Jun; 139(12):2198-209. PubMed ID: 22573618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volatile Organic Compounds Emissions from Luculia pinceana Flower and Its Changes at Different Stages of Flower Development.
    Li Y; Ma H; Wan Y; Li T; Liu X; Sun Z; Li Z
    Molecules; 2016 Apr; 21(4):531. PubMed ID: 27110758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium.
    Fu J; Wang L; Wang Y; Yang L; Yang Y; Dai S
    Plant Physiol Biochem; 2014 Jan; 74():230-8. PubMed ID: 24316581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-binding protein phosphatase AtDBP1 acts as a promoter of flowering in Arabidopsis.
    Zhai H; Ning W; Wu H; Zhang X; Lü S; Xia Z
    Planta; 2016 Mar; 243(3):623-33. PubMed ID: 26586176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic analysis reveals the regulatory module of apple (Malus × domestica) floral transition in response to 6-BA.
    Li Y; Zhang D; An N; Fan S; Zuo X; Zhang X; Zhang L; Gao C; Han M; Xing L
    BMC Plant Biol; 2019 Mar; 19(1):93. PubMed ID: 30841918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding Gene Expression Signatures Underlying Vegetative to Inflorescence Meristem Transition in the Common Bean.
    González AM; Lebrón R; Yuste-Lisbona FJ; Gómez-Martín C; Ortiz-Atienza A; Hackenberg M; Oliver JL; Lozano R; Santalla M
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene activation cascade triggered by a single photoperiodic cycle inducing flowering in Sinapis alba.
    D'Aloia M; Tamseddak K; Bonhomme D; Bonhomme F; Bernier G; Périlleux C
    Plant J; 2009 Sep; 59(6):962-73. PubMed ID: 19473326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 module by the homeodomain proteins PENNYWISE and POUND-FOOLISH in Arabidopsis.
    Lal S; Pacis LB; Smith HM
    Mol Plant; 2011 Nov; 4(6):1123-32. PubMed ID: 21653282
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Yang LW; Wen XH; Fu JX; Dai SL
    Hortic Res; 2018; 5():58. PubMed ID: 30393540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPL3/4/5 Integrate Developmental Aging and Photoperiodic Signals into the FT-FD Module in Arabidopsis Flowering.
    Jung JH; Lee HJ; Ryu JY; Park CM
    Mol Plant; 2016 Dec; 9(12):1647-1659. PubMed ID: 27815142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway.
    Han P; García-Ponce B; Fonseca-Salazar G; Alvarez-Buylla ER; Yu H
    Plant J; 2008 Jul; 55(2):253-65. PubMed ID: 18363787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression Patterns of Key Genes in the Photoperiod and Vernalization Flowering Pathways in
    Yan X; Wang LJ; Zhao YQ; Jia GX
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955483
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.