These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34456980)

  • 1. High-Throughput Sequencing-Based Identification of miRNAs and Their Target mRNAs in Wheat Variety Qing Mai 6 Under Salt Stress Condition.
    He X; Han Z; Yin H; Chen F; Dong Y; Zhang L; Lu X; Zeng J; Ma W; Mu P
    Front Genet; 2021; 12():724527. PubMed ID: 34456980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indian Wheat Genomics Initiative for Harnessing the Potential of Wheat Germplasm Resources for Breeding Disease-Resistant, Nutrient-Dense, and Climate-Resilient Cultivars.
    Kumar S; Jacob SR; Mir RR; Vikas VK; Kulwal P; Chandra T; Kaur S; Kumar U; Kumar S; Sharma S; Singh R; Prasad S; Singh AM; Singh AK; Kumari J; Saharan MS; Bhardwaj SC; Prasad M; Kalia S; Singh K
    Front Genet; 2022; 13():834366. PubMed ID: 35846116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.).
    Zhang Y; Liu Z; Khan AA; Lin Q; Han Y; Mu P; Liu Y; Zhang H; Li L; Meng X; Ni Z; Xin M
    Sci Rep; 2016 Feb; 6():21476. PubMed ID: 26892368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrative approach to identify hexaploid wheat miRNAome associated with development and tolerance to abiotic stress.
    Agharbaoui Z; Leclercq M; Remita MA; Badawi MA; Lord E; Houde M; Danyluk J; Diallo AB; Sarhan F
    BMC Genomics; 2015 Apr; 16(1):339. PubMed ID: 25903161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-Seq-Based WGCNA and Association Analysis Reveal the Key Regulatory Module and Genes Responding to Salt Stress in Wheat Roots.
    Chen J; Zhang L; Liu Y; Shen X; Guo Y; Ma X; Zhang X; Li X; Cheng T; Wen H; Qiao L; Chang Z
    Plants (Basel); 2024 Jan; 13(2):. PubMed ID: 38256827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of miRNAs and Development of Heat-Responsive miRNA-SSR Markers for Characterization of Wheat Germplasm for Terminal Heat Tolerance Breeding.
    Sihag P; Sagwal V; Kumar A; Balyan P; Mir RR; Dhankher OP; Kumar U
    Front Genet; 2021; 12():699420. PubMed ID: 34394189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Throughput Sequencing of Small RNAs in the Two Cucurbita Germplasm with Different Sodium Accumulation Patterns Identifies Novel MicroRNAs Involved in Salt Stress Response.
    Xie J; Lei B; Niu M; Huang Y; Kong Q; Bie Z
    PLoS One; 2015; 10(5):e0127412. PubMed ID: 26010449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance and tolerance reactions of winter wheat lines to
    Dababat AA
    J Nematol; 2019; 51():1-12. PubMed ID: 31157960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small RNA and degradome sequencing used to elucidate the basis of tolerance to salinity and alkalinity in wheat.
    Han H; Wang Q; Wei L; Liang Y; Dai J; Xia G; Liu S
    BMC Plant Biol; 2018 Sep; 18(1):195. PubMed ID: 30219055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of multiple abiotic stress tolerance genes in wheat.
    Kumar R; Masthigowda MH; Kaur A; Bhusal N; Pandey A; Kumar S; Mishra C; Singh G; Singh GP
    Mol Biol Rep; 2020 Nov; 47(11):8629-8643. PubMed ID: 33068231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and integrated analysis of glyphosate stress-responsive microRNAs, lncRNAs, and mRNAs in rice using genome-wide high-throughput sequencing.
    Zhai R; Ye S; Zhu G; Lu Y; Ye J; Yu F; Chu Q; Zhang X
    BMC Genomics; 2020 Mar; 21(1):238. PubMed ID: 32183693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNAs: Potential Targets for Developing Stress-Tolerant Crops.
    Chaudhary S; Grover A; Sharma PC
    Life (Basel); 2021 Mar; 11(4):. PubMed ID: 33800690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.).
    Sun X; Xu L; Wang Y; Yu R; Zhu X; Luo X; Gong Y; Wang R; Limera C; Zhang K; Liu L
    BMC Genomics; 2015 Mar; 16(1):197. PubMed ID: 25888374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress.
    Shi P; Gu M
    BMC Plant Biol; 2020 Dec; 20(1):568. PubMed ID: 33380327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptome responses of leaf and root tissues to salt stress in wheat strains with different salinity tolerances.
    Li J; Gao X; Chen X; Fan Z; Zhang Y; Wang Z; Shi J; Wang C; Zhang H; Wang L; Zhao Q
    Front Genet; 2023; 14():1015599. PubMed ID: 36911411
    [No Abstract]   [Full Text] [Related]  

  • 16. Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local.
    Goyal E; Amit SK; Singh RS; Mahato AK; Chand S; Kanika K
    Sci Rep; 2016 Jun; 6():27752. PubMed ID: 27293111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat.
    Liu H; Able AJ; Able JA
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small RNA deep sequencing reveals the important role of microRNAs in the halophyte Halostachys caspica.
    Yang R; Zeng Y; Yi X; Zhao L; Zhang Y
    Plant Biotechnol J; 2015 Apr; 13(3):395-408. PubMed ID: 25832169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress Tolerance Profiling of a Collection of Extant Salt-Tolerant Rice Varieties and Transgenic Plants Overexpressing Abiotic Stress Tolerance Genes.
    Kurotani K; Yamanaka K; Toda Y; Ogawa D; Tanaka M; Kozawa H; Nakamura H; Hakata M; Ichikawa H; Hattori T; Takeda S
    Plant Cell Physiol; 2015 Oct; 56(10):1867-76. PubMed ID: 26329877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.