These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 34456980)
21. Enhancement of Plant Productivity in the Post-Genomics Era. Thao NP; Tran LS Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678 [TBL] [Abstract][Full Text] [Related]
22. Stress Tolerance Profiling of a Collection of Extant Salt-Tolerant Rice Varieties and Transgenic Plants Overexpressing Abiotic Stress Tolerance Genes. Kurotani K; Yamanaka K; Toda Y; Ogawa D; Tanaka M; Kozawa H; Nakamura H; Hakata M; Ichikawa H; Hattori T; Takeda S Plant Cell Physiol; 2015 Oct; 56(10):1867-76. PubMed ID: 26329877 [TBL] [Abstract][Full Text] [Related]
23. Integrated mRNA and miRNA transcriptome analysis of grape in responses to salt stress. Wei L; Du Y; Xiang J; Zheng T; Cheng J; Wu J Front Plant Sci; 2023; 14():1173857. PubMed ID: 37223813 [TBL] [Abstract][Full Text] [Related]
24. Genome-Wide Identification of MicroRNAs in Leaves and the Developing Head of Four Durum Genotypes during Water Deficit Stress. Liu H; Searle IR; Watson-Haigh NS; Baumann U; Mather DE; Able AJ; Able JA PLoS One; 2015; 10(11):e0142799. PubMed ID: 26562166 [TBL] [Abstract][Full Text] [Related]
25. Current progress in research focused on salt tolerance in Han Y; Li X Front Plant Sci; 2024; 15():1353436. PubMed ID: 38390291 [TBL] [Abstract][Full Text] [Related]
26. Salinity-associated microRNAs and their potential roles in mediating salt tolerance in rice colonized by the endophytic root fungus Piriformospora indica. Kord H; Fakheri B; Ghabooli M; Solouki M; Emamjomeh A; Khatabi B; Sepehri M; Salekdeh GH; Ghaffari MR Funct Integr Genomics; 2019 Jul; 19(4):659-672. PubMed ID: 30903405 [TBL] [Abstract][Full Text] [Related]
27. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. Muthusamy SK; Dalal M; Chinnusamy V; Bansal KC J Plant Physiol; 2017 Apr; 211():100-113. PubMed ID: 28178571 [TBL] [Abstract][Full Text] [Related]
28. Integration of proteomic and transcriptomic profiles reveals multiple levels of genetic regulation of salt tolerance in cotton. Peng Z; He S; Gong W; Xu F; Pan Z; Jia Y; Geng X; Du X BMC Plant Biol; 2018 Jun; 18(1):128. PubMed ID: 29925319 [TBL] [Abstract][Full Text] [Related]
29. Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure. Yasmeen F; Raja NI; Razzaq A; Komatsu S Biochim Biophys Acta; 2016 Nov; 1864(11):1586-98. PubMed ID: 27530299 [TBL] [Abstract][Full Text] [Related]
30. Isolation and molecular characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum turgidum L. subsp. durum), potentially involved in salt-stress responses. Makhloufi E; Yousfi FE; Marande W; Mila I; Hanana M; Bergès H; Mzid R; Bouzayen M J Exp Bot; 2014 Dec; 65(22):6359-71. PubMed ID: 25205575 [TBL] [Abstract][Full Text] [Related]
31. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. Cheah BH; Nadarajah K; Divate MD; Wickneswari R BMC Genomics; 2015 Sep; 16(1):692. PubMed ID: 26369665 [TBL] [Abstract][Full Text] [Related]
32. Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity. Siddiqui MN; Mostofa MG; Akter MM; Srivastava AK; Sayed MA; Hasan MS; Tran LP Chemosphere; 2017 Nov; 187():385-394. PubMed ID: 28858718 [TBL] [Abstract][Full Text] [Related]
33. Identification, analysis and development of salt responsive candidate gene based SSR markers in wheat. Singh AK; Chaurasia S; Kumar S; Singh R; Kumari J; Yadav MC; Singh N; Gaba S; Jacob SR BMC Plant Biol; 2018 Oct; 18(1):249. PubMed ID: 30342465 [TBL] [Abstract][Full Text] [Related]
34. Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula. Long RC; Li MN; Kang JM; Zhang TJ; Sun Y; Yang QC Physiol Plant; 2015 May; 154(1):13-27. PubMed ID: 25156209 [TBL] [Abstract][Full Text] [Related]
35. Novel and conserved miRNAs in the halophyte Suaeda maritima identified by deep sequencing and computational predictions using the ESTs of two mangrove plants. Gharat SA; Shaw BP BMC Plant Biol; 2015 Dec; 15():301. PubMed ID: 26714456 [TBL] [Abstract][Full Text] [Related]
36. Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress. Ma X; Xin Z; Wang Z; Yang Q; Guo S; Guo X; Cao L; Lin T BMC Plant Biol; 2015 Jan; 15():21. PubMed ID: 25623724 [TBL] [Abstract][Full Text] [Related]
37. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Wang M; Wang Y; Zhang Y; Li C; Gong S; Yan S; Li G; Hu G; Ren H; Yang J; Yu T; Yang K Genes Genomics; 2019 Jul; 41(7):781-801. PubMed ID: 30887305 [TBL] [Abstract][Full Text] [Related]
38. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. Zhu D; Luo F; Zou R; Liu J; Yan Y J Proteomics; 2021 Mar; 234():104097. PubMed ID: 33401000 [TBL] [Abstract][Full Text] [Related]
39. Comparative Analysis and Identification of miRNAs and Their Target Genes Responsive to Salt Stress in Diploid and Tetraploid Paulownia fortunei Seedlings. Fan G; Li X; Deng M; Zhao Z; Yang L PLoS One; 2016; 11(2):e0149617. PubMed ID: 26894691 [TBL] [Abstract][Full Text] [Related]
40. Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. Zeng X; Xu Y; Jiang J; Zhang F; Ma L; Wu D; Wang Y; Sun W BMC Plant Biol; 2018 Mar; 18(1):52. PubMed ID: 29587648 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]