These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34457145)

  • 1. Trajectory Inspection: A Method for Iterative Clinician-Driven Design of Reinforcement Learning Studies.
    Ji CX; Oberst M; Kanjilal S; Sontag D
    AMIA Jt Summits Transl Sci Proc; 2021; 2021():305-314. PubMed ID: 34457145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units.
    Yu C; Liu J; Zhao H
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):57. PubMed ID: 30961594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transatlantic transferability of a new reinforcement learning model for optimizing haemodynamic treatment for critically ill patients with sepsis.
    Roggeveen L; El Hassouni A; Ahrendt J; Guo T; Fleuren L; Thoral P; Girbes AR; Hoogendoorn M; Elbers PW
    Artif Intell Med; 2021 Feb; 112():102003. PubMed ID: 33581824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is Deep Reinforcement Learning Ready for Practical Applications in Healthcare? A Sensitivity Analysis of Duel-DDQN for Hemodynamic Management in Sepsis Patients.
    Lu M; Shahn Z; Sow D; Doshi-Velez F; Lehman LH
    AMIA Annu Symp Proc; 2020; 2020():773-782. PubMed ID: 33936452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guideline-informed reinforcement learning for mechanical ventilation in critical care.
    den Hengst F; Otten M; Elbers P; van Harmelen F; François-Lavet V; Hoogendoorn M
    Artif Intell Med; 2024 Jan; 147():102742. PubMed ID: 38184349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards more efficient and robust evaluation of sepsis treatment with deep reinforcement learning.
    Yu C; Huang Q
    BMC Med Inform Decis Mak; 2023 Mar; 23(1):43. PubMed ID: 36859257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement learning for intensive care medicine: actionable clinical insights from novel approaches to reward shaping and off-policy model evaluation.
    Roggeveen LF; Hassouni AE; de Grooth HJ; Girbes ARJ; Hoogendoorn M; Elbers PWG;
    Intensive Care Med Exp; 2024 Mar; 12(1):32. PubMed ID: 38526681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous action deep reinforcement learning for propofol dosing during general anesthesia.
    Schamberg G; Badgeley M; Meschede-Krasa B; Kwon O; Brown EN
    Artif Intell Med; 2022 Jan; 123():102227. PubMed ID: 34998516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Action Reinforcement Learning From a Mixture of Interpretable Experts.
    Akrour R; Tateo D; Peters J
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6795-6806. PubMed ID: 34375280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Hybrid Online Off-Policy Reinforcement Learning Agent Framework Supported by Transformers.
    Villarrubia-Martin EA; Rodriguez-Benitez L; Jimenez-Linares L; Muñoz-Valero D; Liu J
    Int J Neural Syst; 2023 Dec; 33(12):2350065. PubMed ID: 37857407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement Learning Methods in Public Health.
    Weltz J; Volfovsky A; Laber EB
    Clin Ther; 2022 Jan; 44(1):139-154. PubMed ID: 35058056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement Learning for Clinical Decision Support in Critical Care: Comprehensive Review.
    Liu S; See KC; Ngiam KY; Celi LA; Sun X; Feng M
    J Med Internet Res; 2020 Jul; 22(7):e18477. PubMed ID: 32706670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new model of decision processing in instrumental learning tasks.
    Miletić S; Boag RJ; Trutti AC; Stevenson N; Forstmann BU; Heathcote A
    Elife; 2021 Jan; 10():. PubMed ID: 33501916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superhuman performance on sepsis MIMIC-III data by distributional reinforcement learning.
    Böck M; Malle J; Pasterk D; Kukina H; Hasani R; Heitzinger C
    PLoS One; 2022; 17(11):e0275358. PubMed ID: 36327195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing relationships between reinforcement learning and simple behavioral strategies to understand probabilistic reward learning.
    Iyer ES; Kairiss MA; Liu A; Otto AR; Bagot RC
    J Neurosci Methods; 2020 Jul; 341():108777. PubMed ID: 32417532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weak Human Preference Supervision for Deep Reinforcement Learning.
    Cao Z; Wong K; Lin CT
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5369-5378. PubMed ID: 34101604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overcoming Challenges of Applying Reinforcement Learning for Intelligent Vehicle Control.
    Pina R; Tibebu H; Hook J; De Silva V; Kondoz A
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating causal factors into reinforcement learning for dynamic treatment regimes in HIV.
    Yu C; Dong Y; Liu J; Ren G
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):60. PubMed ID: 30961606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.