BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34457182)

  • 1. Brain Atlas Guided Attention U-Net for White Matter Hyperintensity Segmentation.
    Zhang Z; Powell K; Yin C; Cao S; Gonzalez D; Hannawi Y; Zhang P
    AMIA Jt Summits Transl Sci Proc; 2021; 2021():663-671. PubMed ID: 34457182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.
    Moeskops P; de Bresser J; Kuijf HJ; Mendrik AM; Biessels GJ; Pluim JPW; Išgum I
    Neuroimage Clin; 2018; 17():251-262. PubMed ID: 29159042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.
    Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M;
    Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features.
    Rincón M; Díaz-López E; Selnes P; Vegge K; Altmann M; Fladby T; Bjørnerud A
    Neuroinformatics; 2017 Jul; 15(3):231-245. PubMed ID: 28378263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An anatomical knowledge-based MRI deep learning pipeline for white matter hyperintensity quantification associated with cognitive impairment.
    Liang L; Zhou P; Lu W; Guo X; Ye C; Lv H; Wang T; Ma T
    Comput Med Imaging Graph; 2021 Apr; 89():101873. PubMed ID: 33610084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator.
    Wang R; Li C; Wang J; Wei X; Li Y; Hui C; Zhu Y; Zhang S
    Acad Radiol; 2014 Dec; 21(12):1512-23. PubMed ID: 25176451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic quantification of white matter hyperintensities on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging.
    Igwe KC; Lao PJ; Vorburger RS; Banerjee A; Rivera A; Chesebro A; Laing K; Manly JJ; Brickman AM
    Magn Reson Imaging; 2022 Jan; 85():71-79. PubMed ID: 34662699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks.
    Guerrero R; Qin C; Oktay O; Bowles C; Chen L; Joules R; Wolz R; Valdés-Hernández MC; Dickie DA; Wardlaw J; Rueckert D
    Neuroimage Clin; 2018; 17():918-934. PubMed ID: 29527496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities.
    Ling Y; Jouvent E; Cousyn L; Chabriat H; De Guio F
    Neuroinformatics; 2018 Apr; 16(2):269-281. PubMed ID: 29594711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmenting white matter hyperintensities on isotropic three-dimensional Fluid Attenuated Inversion Recovery magnetic resonance images: Assessing deep learning tools on a Norwegian imaging database.
    Røvang MS; Selnes P; MacIntosh BJ; Rasmus Groote I; Pålhaugen L; Sudre C; Fladby T; Bjørnerud A
    PLoS One; 2023; 18(8):e0285683. PubMed ID: 37616243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-Supervised Learning in Medical MRI Segmentation: Brain Tissue with White Matter Hyperintensity Segmentation Using FLAIR MRI.
    Rieu Z; Kim J; Kim RE; Lee M; Lee MK; Oh SW; Wang SM; Kim NY; Kang DW; Lim HK; Kim D
    Brain Sci; 2021 May; 11(6):. PubMed ID: 34071634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-atlas based detection and localization (MADL) for location-dependent quantification of white matter hyperintensities.
    Wu D; Albert M; Soldan A; Pettigrew C; Oishi K; Tomogane Y; Ye C; Ma T; Miller MI; Mori S
    Neuroimage Clin; 2019; 22():101772. PubMed ID: 30927606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully Automatic White Matter Hyperintensity Segmentation using U-net and Skip Connection.
    Zhang Y; Wu J; Chen W; Liu Y; Lyu J; Shi H; Chen Y; Wu EX; Tang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():974-977. PubMed ID: 31946056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. End-to-end volumetric segmentation of white matter hyperintensities using deep learning.
    Farkhani S; Demnitz N; Boraxbekk CJ; Lundell H; Siebner HR; Petersen ET; Madsen KH
    Comput Methods Programs Biomed; 2024 Mar; 245():108008. PubMed ID: 38290291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. U-net combined with CRF and anatomical based spatial features to segment white matter hyperintensities.
    Zhou P; Liang L; Guo X; Lv H; Wang T; Ma T
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1754-1757. PubMed ID: 33018337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts - The MRI-GENIE study.
    Schirmer MD; Dalca AV; Sridharan R; Giese AK; Donahue KL; Nardin MJ; Mocking SJT; McIntosh EC; Frid P; Wasselius J; Cole JW; Holmegaard L; Jern C; Jimenez-Conde J; Lemmens R; Lindgren AG; Meschia JF; Roquer J; Rundek T; Sacco RL; Schmidt R; Sharma P; Slowik A; Thijs V; Woo D; Vagal A; Xu H; Kittner SJ; McArdle PF; Mitchell BD; Rosand J; Worrall BB; Wu O; Golland P; Rost NS;
    Neuroimage Clin; 2019; 23():101884. PubMed ID: 31200151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UBO Detector - A cluster-based, fully automated pipeline for extracting white matter hyperintensities.
    Jiang J; Liu T; Zhu W; Koncz R; Liu H; Lee T; Sachdev PS; Wen W
    Neuroimage; 2018 Jul; 174():539-549. PubMed ID: 29578029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images.
    Li H; Jiang G; Zhang J; Wang R; Wang Z; Zheng WS; Menze B
    Neuroimage; 2018 Dec; 183():650-665. PubMed ID: 30125711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic segmentation of white matter hyperintensities in T2-FLAIR with AQUA: A comparative validation study against conventional methods.
    Lee S; Rieu Z; Kim RE; Lee M; Yen K; Yong J; Kim D
    Brain Res Bull; 2023 Dec; 205():110825. PubMed ID: 38000477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of TrUE-Net in comparison to established white matter hyperintensity segmentation methods: An independent validation study.
    Strain JF; Rahmani M; Dierker D; Owen C; Jafri H; Vlassenko AG; Womack K; Fripp J; Tosun D; Benzinger TLS; Weiner M; Masters C; Lee JM; Morris JC; Goyal MS;
    Neuroimage; 2024 Jan; 285():120494. PubMed ID: 38086495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.