These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34457326)

  • 1. Beneficial wake-capture effect for forward propulsion with a restrained wing-pitch motion of a butterfly.
    Lin YJ; Chang SK; Lai YH; Yang JT
    R Soc Open Sci; 2021 Aug; 8(8):202172. PubMed ID: 34457326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-up butterfly model with thorax-pitch control and wing-pitch flexibility.
    Suzuki K; Iguchi D; Ishizaki K; Yoshino M
    Bioinspir Biomim; 2024 Jun; 19(4):. PubMed ID: 38866024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation.
    Fei YH; Yang JT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033004. PubMed ID: 26465553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
    Zheng L; Hedrick TL; Mittal R
    PLoS One; 2013; 8(1):e53060. PubMed ID: 23341923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoupling wing-shape effects of wing-swept angle and aspect ratio on a forward-flying butterfly.
    Chang SK; Lin YJ; Hsu KL; Yang JT
    Phys Rev E; 2023 Jun; 107(6-2):065105. PubMed ID: 37464647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forward flight of swallowtail butterfly with simple flapping motion.
    Tanaka H; Shimoyama I
    Bioinspir Biomim; 2010 Jun; 5(2):026003. PubMed ID: 20484782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced lift and thrust via the translational motion between the thorax-abdomen node and the center of mass of a butterfly with a constructive abdominal oscillation.
    Chang SK; Lai YH; Lin YJ; Yang JT
    Phys Rev E; 2020 Dec; 102(6-1):062407. PubMed ID: 33466078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles.
    Zbikowski R
    Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):273-90. PubMed ID: 16210181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study.
    van Veen WG; van Leeuwen JL; Muijres FT
    J R Soc Interface; 2019 Jun; 16(155):20190118. PubMed ID: 31213176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting the flight dynamics of take-off of a butterfly: experiments and CFD simulations for a cabbage white butterfly.
    Suzuki K; Nakamura M; Kouji M; Yoshino M
    Biol Open; 2022 Mar; 11(3):. PubMed ID: 35098995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.
    Bluman J; Kang CK
    Bioinspir Biomim; 2017 Jun; 12(4):046004. PubMed ID: 28463224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power Benefits of High-Altitude Flapping Wing Flight at the Monarch Butterfly Scale.
    Kang CK; Sridhar M; Twigg R; Pohly J; Lee T; Aono H
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of body rotation during the flight of a butterfly.
    Fei YH; Yang JT
    Phys Rev E; 2016 Mar; 93(3):033124. PubMed ID: 27078464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings.
    Lehmann FO
    J Exp Biol; 2008 Jan; 211(Pt 2):224-33. PubMed ID: 18165250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerodynamic effects on an emulated hovering passerine with different wing-folding amplitudes.
    Chen WH; Yeh SI
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33836515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots.
    Ortega Ancel A; Eastwood R; Vogt D; Ithier C; Smith M; Wood R; Kovač M
    Interface Focus; 2017 Feb; 7(1):20160087. PubMed ID: 28163879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capturing wake capture: a 2D numerical investigation into wing-wake interaction aerodynamics.
    Li H; Nabawy MRA
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36215970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of wing-wing interaction coupled with morphology and kinematic features of damselflies.
    Lai YH; Lin YJ; Chang SK; Yang JT
    Bioinspir Biomim; 2020 Dec; 16(1):. PubMed ID: 33075754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.