These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34457326)

  • 41. Aerial locomotion in flies and robots: kinematic control and aerodynamics of oscillating wings.
    Lehmann FO
    Arthropod Struct Dev; 2004 Jul; 33(3):331-45. PubMed ID: 18089042
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight.
    Bomphrey RJ; Nakata T; Phillips N; Walker SM
    Nature; 2017 Apr; 544(7648):92-95. PubMed ID: 28355184
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tensile mechanical properties and finite element simulation of the wings of the butterfly Tirumala limniace.
    Shen H; Ji A; Li Q; Li X; Ma Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Mar; 209(2):239-251. PubMed ID: 35840718
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of structural flexibility of wings in flapping flight of butterfly.
    Senda K; Obara T; Kitamura M; Yokoyama N; Hirai N; Iima M
    Bioinspir Biomim; 2012 Jun; 7(2):025002. PubMed ID: 22617048
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aerodynamic effects of deviating motion of flapping wings in hovering flight.
    Kim HY; Han JS; Han JH
    Bioinspir Biomim; 2019 Feb; 14(2):026006. PubMed ID: 30616233
    [TBL] [Abstract][Full Text] [Related]  

  • 46. THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS.
    Dickinson M
    J Exp Biol; 1994 Jul; 192(1):179-206. PubMed ID: 9317589
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design optimization and experimental study of a novel mechanism for a hover-able bionic flapping-wing micro air vehicle.
    Deng H; Xiao S; Huang B; Yang L; Xiang X; Ding X
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33075759
    [No Abstract]   [Full Text] [Related]  

  • 48. Wing-pitching mechanism of hovering Ruby-throated hummingbirds.
    Song J; Luo H; Hedrick TL
    Bioinspir Biomim; 2015 Jan; 10(1):016007. PubMed ID: 25599381
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evolution of the wave: aerodynamic and aposematic functions of butterfly wing motion.
    Srygley RB
    Proc Biol Sci; 2007 Apr; 274(1612):913-7. PubMed ID: 17264060
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The impact of dragonfly wing deformations on aerodynamic performance during forward flight.
    Shumway N; Gabryszuk M; Laurence S
    Bioinspir Biomim; 2020 Feb; 15(2):026005. PubMed ID: 31747648
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Volumetric visualization of the near- and far-field wake in flapping wings.
    Liu Y; Cheng B; Barbera G; Troolin DR; Deng X
    Bioinspir Biomim; 2013 Sep; 8(3):036010. PubMed ID: 23924871
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrodynamics of Butterfly-Mode Flapping Propulsion of Dolphin Pectoral Fins with Elliptical Trajectories.
    Xia D; Li Z; Lei M; Shi Y; Luo X
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999163
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird.
    Song J; Luo H; Hedrick TL
    J R Soc Interface; 2014 Sep; 11(98):20140541. PubMed ID: 25008082
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinematics and hydrodynamics analyses of swimming penguins: wing bending improves propulsion performance.
    Harada N; Oura T; Maeda M; Shen Y; Kikuchi DM; Tanaka H
    J Exp Biol; 2021 Nov; 224(21):. PubMed ID: 34553753
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wing Design in Flies: Properties and Aerodynamic Function.
    Krishna S; Cho M; Wehmann HN; Engels T; Lehmann FO
    Insects; 2020 Jul; 11(8):. PubMed ID: 32718051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unconventional lift-generating mechanisms in free-flying butterflies.
    Srygley RB; Thomas AL
    Nature; 2002 Dec; 420(6916):660-4. PubMed ID: 12478291
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational investigation of cicada aerodynamics in forward flight.
    Wan H; Dong H; Gai K
    J R Soc Interface; 2015 Jan; 12(102):20141116. PubMed ID: 25551136
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clap and fling mechanism with interacting porous wings in tiny insect flight.
    Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA
    J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A simple model of wake capture aerodynamics.
    Nabawy MRA
    J R Soc Interface; 2023 Sep; 20(206):20230282. PubMed ID: 37751875
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria).
    Hedrick TL; Tobalske BW; Biewener AA
    J Exp Biol; 2002 May; 205(Pt 10):1389-409. PubMed ID: 11976351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.