These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34457328)

  • 1. Tandem-wing interactions on aerodynamic performance inspired by dragonfly hovering.
    Peng L; Zheng M; Pan T; Su G; Li Q
    R Soc Open Sci; 2021 Aug; 8(8):202275. PubMed ID: 34457328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerodynamic Performance of a Dragonfly-Inspired Tandem Wing System for a Biomimetic Micro Air Vehicle.
    Salami E; Montazer E; Ward TA; Nik Ghazali NN; Anjum Badruddin I
    Front Bioeng Biotechnol; 2022; 10():787220. PubMed ID: 35662843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of phase lag on the hovering flight of damselfly and dragonfly.
    Zou PY; Lai YH; Yang JT
    Phys Rev E; 2019 Dec; 100(6-1):063102. PubMed ID: 31962416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.
    Wang JK; Sun M
    J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight.
    Wang ZJ; Russell D
    Phys Rev Lett; 2007 Oct; 99(14):148101. PubMed ID: 17930724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings.
    Maybury WJ; Lehmann FO
    J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flight Maneuver of a Damselfly with Phase Modulation of the Wings.
    Lai YH; Ma JF; Yang JT
    Integr Comp Biol; 2021 Jul; 61(1):20-36. PubMed ID: 33710279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, Characterization, and Liftoff of an Insect-Scale Soft Robotic Dragonfly Powered by Dielectric Elastomer Actuators.
    Chen Y; Arase C; Ren Z; Chirarattananon P
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerodynamic characteristics along the wing span of a dragonfly
    Hefler C; Qiu H; Shyy W
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30108128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering.
    Sun M; Lan SL
    J Exp Biol; 2004 May; 207(Pt 11):1887-901. PubMed ID: 15107443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of drag in insect hovering.
    Wang ZJ
    J Exp Biol; 2004 Nov; 207(Pt 23):4147-55. PubMed ID: 15498960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenomenology and scaling of optimal flapping wing kinematics.
    Gehrke A; Mulleners K
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33264765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force measurements of flexible tandem wings in hovering and forward flights.
    Zheng Y; Wu Y; Tang H
    Bioinspir Biomim; 2015 Feb; 10(1):016021. PubMed ID: 25656164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight.
    Lee YJ; Lua KB
    Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspiration of the vein structure of dragonfly wings on its flight characteristics.
    Liu C; Du R; Li F; Sun J
    Microsc Res Tech; 2022 Mar; 85(3):829-839. PubMed ID: 34581475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
    Nakata T; Liu H
    Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspect Ratio Effects on the Aerodynamic Performance of a Biomimetic Hummingbird Wing in Flapping.
    Min Y; Zhao G; Pan D; Shao X
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37366811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of the hovering efficiency of flapping and revolving wings.
    Zheng L; Hedrick T; Mittal R
    Bioinspir Biomim; 2013 Sep; 8(3):036001. PubMed ID: 23680659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl.
    Usherwood JR; Lehmann FO
    J R Soc Interface; 2008 Nov; 5(28):1303-7. PubMed ID: 18477538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.