These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34457344)

  • 1. New fossils of Jurassic ophiurid brittle stars (Ophiuroidea; Ophiurida) provide evidence for early clade evolution in the deep sea.
    Thuy B; Numberger-Thuy LD; Pineda-Enríquez T
    R Soc Open Sci; 2021 Aug; 8(8):210643. PubMed ID: 34457344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new phosphatized ophiuroid from the lower Triassic of Nevada and its position in the evolutionary history of the Ophiuroidea (Echinodermata).
    Thuy B; Maxwell V; Pruss SB
    Zootaxa; 2021 Nov; 5071(3):369-383. PubMed ID: 35390905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unravelling the origin of the basket stars and their allies (Echinodermata, Ophiuroidea, Euryalida).
    Thuy B; Stöhr S
    Sci Rep; 2018 May; 8(1):8493. PubMed ID: 29855566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new bathyal ophiacanthid brittle star (Ophiuroidea: Ophiacanthidae) with Caribbean affinities from the Plio-Pleistocene of the Mediterranean.
    Numberger-Thuy LD; Thuy B
    Zootaxa; 2020 Jul; 4820(1):zootaxa.4820.1.2. PubMed ID: 33056080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brittle stars looking like starfish: the first fossil record of the Astrophiuridae and a remarkable case of convergent evolution.
    Thuy B; Gale A; Numberger-Thuy L
    PeerJ; 2019; 7():e8008. PubMed ID: 31741791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relict from the Jurassic: new family of brittle-stars from a New Caledonian seamount.
    O'Hara TD; Thuy B; Hugall AF
    Proc Biol Sci; 2021 Jun; 288(1953):20210684. PubMed ID: 34130505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation of mitochondrial genome arrangements in brittle stars (Echinodermata, Ophiuroidea).
    Galaska MP; Li Y; Kocot KM; Mahon AR; Halanych KM
    Mol Phylogenet Evol; 2019 Jan; 130():115-120. PubMed ID: 30316947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fossil evidence for the ancient link between clonal fragmentation, six-fold symmetry and an epizoic lifestyle in asterozoan echinoderms.
    Thuy B; Numberger-Thuy LD; Härer J; Kroh A; Winkler V; Schweigert G
    Proc Biol Sci; 2024 May; 291(2023):20232832. PubMed ID: 38747704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturization during a Silurian environmental crisis generated the modern brittle star body plan.
    Thuy B; Eriksson ME; Kutscher M; Lindgren J; Numberger-Thuy LD; Wright DF
    Commun Biol; 2022 Jan; 5(1):14. PubMed ID: 35013524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A remarkable new family of Jurassic insects (Neuroptera) with primitive wing venation and its phylogenetic position in Neuropterida.
    Yang Q; Makarkin VN; Winterton SL; Khramov AV; Ren D
    PLoS One; 2012; 7(9):e44762. PubMed ID: 23028608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenomic resolution of the class Ophiuroidea unlocks a global microfossil record.
    O'Hara TD; Hugall AF; Thuy B; Moussalli A
    Curr Biol; 2014 Aug; 24(16):1874-9. PubMed ID: 25065752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probable basal allosauroid from the early Middle Jurassic Cañadón Asfalto Formation of Argentina highlights phylogenetic uncertainty in tetanuran theropod dinosaurs.
    Rauhut OWM; Pol D
    Sci Rep; 2019 Dec; 9(1):18826. PubMed ID: 31827108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new ophiacanthid brittle star (Echinodermata, Ophiuroidea) from sublittoral crinoid and seagrass communities of late Maastrichtian age in the southeast Netherlands.
    Thuy B; Numberger-Thuy L; Jagt JWM
    PeerJ; 2020; 8():e9671. PubMed ID: 32904070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Morphological Phylogeny of the Ophiuroidea (Echinodermata) Accords with Molecular Evidence and Renders Microfossils Accessible for Cladistics.
    Thuy B; Stöhr S
    PLoS One; 2016; 11(5):e0156140. PubMed ID: 27227685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of offshore origination revealed through ophiuroid phylogenomics.
    Bribiesca-Contreras G; Verbruggen H; Hugall AF; O'Hara TD
    Proc Biol Sci; 2017 Jul; 284(1858):. PubMed ID: 28679721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic relationships of †Luisiella feruglioi (Bordas) and the recognition of a new clade of freshwater teleosts from the Jurassic of Gondwana.
    Sferco E; López-Arbarello A; Báez AM
    BMC Evol Biol; 2015 Dec; 15():268. PubMed ID: 26630925
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Takano T; Kano Y; Mogi T; Okanishi M
    Zoolog Sci; 2023 Feb; 40(1):64-69. PubMed ID: 36744711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The early evolutionary history of belemnites: new data from Japan.
    Iba Y; Sano S; Mutterlose J
    PLoS One; 2014; 9(5):e95632. PubMed ID: 24788872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High diversity, low disparity and small body size in plesiosaurs (Reptilia, Sauropterygia) from the Triassic-Jurassic boundary.
    Benson RB; Evans M; Druckenmiller PS
    PLoS One; 2012; 7(3):e31838. PubMed ID: 22438869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.