These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 34458242)

  • 1. A Hyper-Viscoelastic Continuum-Level Finite Element Model of the Spinal Cord Assessed for Transverse Indentation and Impact Loading.
    Rycman A; McLachlin S; Cronin DS
    Front Bioeng Biotechnol; 2021; 9():693120. PubMed ID: 34458242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive mechanical characterization of non-human primate spinal cord white matter.
    Jannesar S; Allen M; Mills S; Gibbons A; Bresnahan JC; Salegio EA; Sparrey CJ
    Acta Biomater; 2018 Jul; 74():260-269. PubMed ID: 29729417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelasticity of spinal cord and meningeal tissues.
    Ramo NL; Troyer KL; Puttlitz CM
    Acta Biomater; 2018 Jul; 75():253-262. PubMed ID: 29852238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of numerical methods for cerebrospinal fluid representation and fluid-structure interaction during transverse impact of a finite element spinal cord model.
    Rycman A; McLachlin S; Cronin DS
    Int J Numer Method Biomed Eng; 2022 Mar; 38(3):e3570. PubMed ID: 34997836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain Material Properties and Integration of Arachnoid Complex for Biofidelic Impact Response for Human Head Finite Element Model.
    Rycman A; Bustamante M; Cronin DS
    Ann Biomed Eng; 2024 Apr; 52(4):908-919. PubMed ID: 38218736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The denticulate ligament - Tensile characterisation and finite element micro-scale model of the structure stabilising spinal cord.
    Polak-Kraśna K; Robak-Nawrocka S; Szotek S; Czyż M; Gheek D; Pezowicz C
    J Mech Behav Biomed Mater; 2019 Mar; 91():10-17. PubMed ID: 30529981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyper-viscoelastic mechanical behavior of cranial pia mater in tension.
    Li Y; Zhang W; Lu YC; Wu CW
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105108. PubMed ID: 32736277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of passive muscle, skin, and adipose tissue mechanical properties on head and neck response in rear impacts assessed with a finite element model.
    Gierczycka D; Rycman A; Cronin D
    Traffic Inj Prev; 2021; 22(5):407-412. PubMed ID: 34037475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Transverse Isotropy of Spinal Cord White Matter Under Dynamic Load.
    Jannesar S; Nadler B; Sparrey CJ
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27428053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Bi-axial tensile tests of spinal meningeal tissues and constitutive models comparison.
    Evin M; Sudres P; Weber P; Godio-Raboutet Y; Arnoux PJ; Wagnac E; Petit Y; Tillier Y
    Acta Biomater; 2022 Mar; 140():446-456. PubMed ID: 34838701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of white, grey, and pia mater properties on tissue level stresses and strains in the compressed spinal cord.
    Sparrey CJ; Manley GT; Keaveny TM
    J Neurotrauma; 2009 Apr; 26(4):585-95. PubMed ID: 19292657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of in vivo and ex vivo viscoelastic behavior of the spinal cord.
    Ramo NL; Shetye SS; Streijger F; Lee JHT; Troyer KL; Kwon BK; Cripton P; Puttlitz CM
    Acta Biomater; 2018 Mar; 68():78-89. PubMed ID: 29288084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protection of cortex by overlying meninges tissue during dynamic indentation of the adolescent brain.
    MacManus DB; Pierrat B; Murphy JG; Gilchrist MD
    Acta Biomater; 2017 Jul; 57():384-394. PubMed ID: 28501711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain rate dependent behavior of the porcine spinal cord under transverse dynamic compression.
    Fradet L; Cliche F; Petit Y; Mac-Thiong JM; Arnoux PJ
    Proc Inst Mech Eng H; 2016 Sep; 230(9):858-866. PubMed ID: 27340036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing Predictive Accuracy and Computational Costs for Viscoelastic Modeling of Spinal Cord Tissues.
    Ramo NL; Troyer KL; Puttlitz CM
    J Biomech Eng; 2019 May; 141(5):. PubMed ID: 30835287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidirectional mechanical properties and constitutive modeling of human adipose tissue under dynamic loading.
    Sun Z; Gepner BD; Lee SH; Rigby J; Cottler PS; Hallman JJ; Kerrigan JR
    Acta Biomater; 2021 Jul; 129():188-198. PubMed ID: 34048975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis.
    Ahanchian N; Nester CJ; Howard D; Ren L; Parker D
    Med Eng Phys; 2017 Feb; 40():11-19. PubMed ID: 27913178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive model for brain tissue under finite compression.
    Laksari K; Shafieian M; Darvish K
    J Biomech; 2012 Feb; 45(4):642-6. PubMed ID: 22281404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties and function of the spinal pia mater.
    Ozawa H; Matsumoto T; Ohashi T; Sato M; Kokubun S
    J Neurosurg Spine; 2004 Jul; 1(1):122-7. PubMed ID: 15291032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.