BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34458325)

  • 1. Grasp Stability Prediction for a Dexterous Robotic Hand Combining Depth Vision and Haptic Bayesian Exploration.
    Siddiqui MS; Coppola C; Solak G; Jamone L
    Front Robot AI; 2021; 8():703869. PubMed ID: 34458325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptic Exploration of Unknown Objects for Robust In-Hand Manipulation.
    Solak G; Jamone L
    IEEE Trans Haptics; 2023; 16(3):400-411. PubMed ID: 37527306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.
    Whitwell RL; Ganel T; Byrne CM; Goodale MA
    Front Hum Neurosci; 2015; 9():216. PubMed ID: 25999834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neural underpinnings of haptically guided functional grasping of tools: An fMRI study.
    Styrkowiec PP; Nowik AM; Króliczak G
    Neuroimage; 2019 Jul; 194():149-162. PubMed ID: 30910723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direction of Slip Detection for Adaptive Grasp Force Control with a Dexterous Robotic Hand.
    Abd MA; Gonzalez IJ; Colestock TC; Kent BA; Engeberg ED
    IEEE ASME Int Conf Adv Intell Mechatron; 2018 Jul; 2018():21-27. PubMed ID: 32042473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot Intelligent Grasp of Unknown Objects Based on Multi-Sensor Information.
    Ji SQ; Huang MB; Huang HP
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30986985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Human-Like Grasp: Functional Grasp by Dexterous Robotic Hand Via Object-Hand Semantic Representation.
    Zhu T; Wu R; Hang J; Lin X; Sun Y
    IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):12521-12534. PubMed ID: 37134035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting Robot Hand Compliance and Environmental Constraints for Edge Grasps.
    Bimbo J; Turco E; Ghazaei Ardakani M; Pozzi M; Salvietti G; Bo V; Malvezzi M; Prattichizzo D
    Front Robot AI; 2019; 6():135. PubMed ID: 33501150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Haptic-Based Dual-Arm Manipulation.
    Turlapati SH; Campolo D
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulation of Unknown Objects to Improve the Grasp Quality Using Tactile Information.
    Montaño A; Suárez R
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29751533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haptically Guided Grasping. fMRI Shows Right-Hemisphere Parietal Stimulus Encoding, and Bilateral Dorso-Ventral Parietal Gradients of Object- and Action-Related Processing during Grasp Execution.
    Marangon M; Kubiak A; Króliczak G
    Front Hum Neurosci; 2015; 9():691. PubMed ID: 26779002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hand Grasp Pose Prediction Based on Motion Prior Field.
    Shi X; Guo W; Xu W; Sheng X
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Calibration of a Force/Tactile Sensor for Dexterous Manipulation.
    Costanzo M; De Maria G; Natale C; Pirozzi S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning Haptic-Based Object Pose Estimation for In-Hand Manipulation Control With Underactuated Robotic Hands.
    Azulay O; Ben-David I; Sintov A
    IEEE Trans Haptics; 2022 Dec; PP():. PubMed ID: 37015658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning the signatures of the human grasp using a scalable tactile glove.
    Sundaram S; Kellnhofer P; Li Y; Zhu JY; Torralba A; Matusik W
    Nature; 2019 May; 569(7758):698-702. PubMed ID: 31142856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-Orbit Robotic Grasping of a Spent Rocket Stage: Grasp Stability Analysis and Experimental Results.
    Mavrakis N; Hao Z; Gao Y
    Front Robot AI; 2021; 8():652681. PubMed ID: 34222349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grasping Force Control of Multi-Fingered Robotic Hands through Tactile Sensing for Object Stabilization.
    Deng Z; Jonetzko Y; Zhang L; Zhang J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark.
    Monaco S; Gallivan JP; Figley TD; Singhal A; Culham JC
    J Neurosci; 2017 Nov; 37(48):11572-11591. PubMed ID: 29066555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human reach-to-grasp compensation with object pose uncertainty.
    Fu Q; Ushani A; Jentoft L; Howe RD; Santella M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6893-6. PubMed ID: 24111329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors.
    Spiers AJ; Liarokapis MV; Calli B; Dollar AM
    IEEE Trans Haptics; 2016; 9(2):207-20. PubMed ID: 26829804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.