These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34458615)

  • 1. Sugarcane bagasse - A source of cellulosic fiber for diverse applications.
    Mahmud MA; Anannya FR
    Heliyon; 2021 Aug; 7(8):e07771. PubMed ID: 34458615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particleboard panels made with sugarcane bagasse waste-an exploratory study.
    Cangussu N; Chaves P; da Rocha W; Maia L
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):25265-25273. PubMed ID: 34669133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective.
    Alokika ; Anu ; Kumar A; Kumar V; Singh B
    Int J Biol Macromol; 2021 Feb; 169():564-582. PubMed ID: 33385447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emission and Mechanical Properties of Glass and Cellulose Fiber Reinforced Bio-Polyamide Composites.
    Wolff S; Rüppel A; Rida HA; Heim HP
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun Ultrafine Cationic Cellulose Fibers Produced from Sugarcane Bagasse for Potential Textile Applications.
    Ochica Larrota AF; Vera-Graziano R; López-Córdoba A; Gómez-Pachón EY
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valorization of Cellulose-Based Materials from Agricultural Waste: Comparison between Sugarcane Bagasse and Rice Straw.
    Thongsomboon W; Baimark Y; Srihanam P
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valorization of an industrial organosolv-sugarcane bagasse lignin: Characterization and use as a matrix in biobased composites reinforced with sisal fibers.
    Ramires EC; Megiatto JD; Gardrat C; Castellan A; Frollini E
    Biotechnol Bioeng; 2010 Nov; 107(4):612-21. PubMed ID: 20589841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites.
    El Achaby M; Kassab Z; Aboulkas A; Gaillard C; Barakat A
    Int J Biol Macromol; 2018 Jan; 106():681-691. PubMed ID: 28823511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically purified cellulose and its nanocrystals from sugarcane baggase: isolation and characterization.
    Evans SK; Wesley ON; Nathan O; Moloto MJ
    Heliyon; 2019 Oct; 5(10):e02635. PubMed ID: 31687498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol.
    Krishnan C; Sousa Lda C; Jin M; Chang L; Dale BE; Balan V
    Biotechnol Bioeng; 2010 Oct; 107(3):441-50. PubMed ID: 20521302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revalorization of cellulosic fiber extracted from the waste stem of Brassica oleracea var. botrytis L. (cauliflower) by characterizing for potential composite applications.
    Eryilmaz O
    Int J Biol Macromol; 2024 May; 266(Pt 1):131086. PubMed ID: 38521302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse.
    Vanitjinda G; Nimchua T; Sukyai P
    Int J Biol Macromol; 2019 Feb; 122():503-516. PubMed ID: 30385339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Durability of Cellulosic-Fiber-Reinforced Geopolymers: A Review.
    Liu J; Lv C
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Characterization of Bio-Composites from the Plant Wastes of
    Motaleb KZMA; Abakevičienė B; Milašius R
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Description of a new cellulosic natural fiber extracted from Helianthus tuberosus L. as a composite reinforcement material.
    Dalmis R
    Physiol Plant; 2023; 175(4):e13960. PubMed ID: 37339003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application.
    Ghaderi M; Mousavi M; Yousefi H; Labbafi M
    Carbohydr Polym; 2014 Apr; 104():59-65. PubMed ID: 24607160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the Mechanical Performance of Bleached Hemp Fibers Reinforced Polyamide 6 Composites: A Competitive Alternative to Commodity Composites.
    Alonso-Montemayor FJ; Tarrés Q; Oliver-Ortega H; Espinach FX; Narro-Céspedes RI; Castañeda-Facio AO; Delgado-Aguilar M
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32370263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of sugarcane bagasse variability on sugar recovery for cellulosic ethanol production.
    Andrade LP; Crespim E; de Oliveira N; de Campos RC; Teodoro JC; Galvão CMA; Maciel Filho R
    Bioresour Technol; 2017 Oct; 241():75-81. PubMed ID: 28550776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical and Mechanical Behaviour of Sugarcane Bagasse Fibre-Reinforced Epoxy Bio-Composites.
    Prasad L; Kumar S; Patel RV; Yadav A; Kumar V; Winczek J
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid.
    Reddy KO; Zhang J; Zhang J; Rajulu AV
    Carbohydr Polym; 2014 Dec; 114():537-545. PubMed ID: 25263924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.