BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34458786)

  • 1. Mapping the energy landscape of protein-ligand binding
    Stenström O; Diehl C; Modig K; Nilsson UJ; Akke M
    RSC Chem Biol; 2021 Feb; 2(1):259-265. PubMed ID: 34458786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational dynamics and thermodynamics of protein-ligand binding studied by NMR relaxation.
    Akke M
    Biochem Soc Trans; 2012 Apr; 40(2):419-23. PubMed ID: 22435823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-energy landscapes of ion-channel gating are malleable: changes in the number of bound ligands are accompanied by changes in the location of the transition state in acetylcholine-receptor channels.
    Grosman C
    Biochemistry; 2003 Dec; 42(50):14977-87. PubMed ID: 14674774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of protein-ligand interactions by NMR.
    Furukawa A; Konuma T; Yanaka S; Sugase K
    Prog Nucl Magn Reson Spectrosc; 2016 Aug; 96():47-57. PubMed ID: 27573180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes.
    Jayalakshmi V; Krishna NR
    J Magn Reson; 2002 Mar; 155(1):106-18. PubMed ID: 11945039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping allostery through equilibrium perturbation NMR spectroscopy.
    Das R; Abu-Abed M; Melacini G
    J Am Chem Soc; 2006 Jul; 128(26):8406-7. PubMed ID: 16802799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the substrate binding specificity of quorum-quenching acylase PvdQ.
    Liu Y; Ebalunode JO; Briggs JM
    J Mol Graph Model; 2019 May; 88():104-120. PubMed ID: 30703686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of backbone motions in ligand binding to the c-Src SH3 domain.
    Wang C; Pawley NH; Nicholson LK
    J Mol Biol; 2001 Nov; 313(4):873-87. PubMed ID: 11697910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A folded excited state of ligand-free nuclear coactivator binding domain (NCBD) underlies plasticity in ligand recognition.
    Kjaergaard M; Andersen L; Nielsen LD; Teilum K
    Biochemistry; 2013 Mar; 52(10):1686-93. PubMed ID: 23373423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the kinetic landscape of transient peptide-protein interactions by use of peptide (15)n NMR relaxation dispersion spectroscopy: binding of an antithrombin peptide to human prothrombin.
    Tolkatchev D; Xu P; Ni F
    J Am Chem Soc; 2003 Oct; 125(41):12432-42. PubMed ID: 14531686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the Ligand Binding Landscape.
    Dickson A
    Biophys J; 2018 Nov; 115(9):1707-1719. PubMed ID: 30327139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-target interactions: what can we learn from NMR?
    Carlomagno T
    Annu Rev Biophys Biomol Struct; 2005; 34():245-66. PubMed ID: 15869390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic competition between catch and slip bonds in selectins bound to ligands.
    Barsegov V; Thirumalai D
    J Phys Chem B; 2006 Dec; 110(51):26403-12. PubMed ID: 17181300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptor binding kinetics and cellular responses of six N-formyl peptide agonists in human neutrophils.
    Waller A; Sutton KL; Kinzer-Ursem TL; Absood A; Traynor JR; Linderman JJ; Omann GM
    Biochemistry; 2004 Jun; 43(25):8204-16. PubMed ID: 15209517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical analysis of the inter-ligand overhauser effect: a new approach for mapping structural relationships of macromolecular ligands.
    London RE
    J Magn Reson; 1999 Dec; 141(2):301-11. PubMed ID: 10579953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay between Conformational Entropy and Solvation Entropy in Protein-Ligand Binding.
    Verteramo ML; Stenström O; Ignjatović MM; Caldararu O; Olsson MA; Manzoni F; Leffler H; Oksanen E; Logan DT; Nilsson UJ; Ryde U; Akke M
    J Am Chem Soc; 2019 Feb; 141(5):2012-2026. PubMed ID: 30618244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of human galectin-1 binding to saccharide ligands on dimer dissociation kinetics and structure.
    Romero JM; Trujillo M; Estrin DA; Rabinovich GA; Di Lella S
    Glycobiology; 2016 Dec; 26(12):1317-1327. PubMed ID: 27222530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A water-swap reaction coordinate for the calculation of absolute protein-ligand binding free energies.
    Woods CJ; Malaisree M; Hannongbua S; Mulholland AJ
    J Chem Phys; 2011 Feb; 134(5):054114. PubMed ID: 21303099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The universal statistical distributions of the affinity, equilibrium constants, kinetics and specificity in biomolecular recognition.
    Zheng X; Wang J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004212. PubMed ID: 25885453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.