These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 34458825)
1. What's all the phos about? Insights into the phosphorylation state of the RNA polymerase II C-terminal domain LeBlanc BM; Moreno RY; Escobar EE; Venkat Ramani MK; Brodbelt JS; Zhang Y RSC Chem Biol; 2021 Aug; 2(4):1084-1095. PubMed ID: 34458825 [TBL] [Abstract][Full Text] [Related]
2. The activity of COOH-terminal domain phosphatase is regulated by a docking site on RNA polymerase II and by the general transcription factors IIF and IIB. Chambers RS; Wang BQ; Burton ZF; Dahmus ME J Biol Chem; 1995 Jun; 270(25):14962-9. PubMed ID: 7797476 [TBL] [Abstract][Full Text] [Related]
3. Structural determinants for accurate dephosphorylation of RNA polymerase II by its cognate C-terminal domain (CTD) phosphatase during eukaryotic transcription. Irani S; Sipe SN; Yang W; Burkholder NT; Lin B; Sim K; Matthews WL; Brodbelt JS; Zhang Y J Biol Chem; 2019 May; 294(21):8592-8605. PubMed ID: 30971428 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylation of the C-terminal domain of RNA polymerase II. Dahmus ME Biochim Biophys Acta; 1995 Apr; 1261(2):171-82. PubMed ID: 7711060 [TBL] [Abstract][Full Text] [Related]
5. Transcription-independent RNA polymerase II dephosphorylation by the FCP1 carboxy-terminal domain phosphatase in Xenopus laevis early embryos. Palancade B; Dubois MF; Dahmus ME; Bensaude O Mol Cell Biol; 2001 Oct; 21(19):6359-68. PubMed ID: 11533226 [TBL] [Abstract][Full Text] [Related]
6. Structural Motifs for CTD Kinase Specificity on RNA Polymerase II during Eukaryotic Transcription. Ramani MKV; Escobar EE; Irani S; Mayfield JE; Moreno RY; Butalewicz JP; Cotham VC; Wu H; Tadros M; Brodbelt JS; Zhang YJ ACS Chem Biol; 2020 Aug; 15(8):2259-2272. PubMed ID: 32568517 [TBL] [Abstract][Full Text] [Related]
7. Heptad-Specific Phosphorylation of RNA Polymerase II CTD. Schüller R; Forné I; Straub T; Schreieck A; Texier Y; Shah N; Decker TM; Cramer P; Imhof A; Eick D Mol Cell; 2016 Jan; 61(2):305-14. PubMed ID: 26799765 [TBL] [Abstract][Full Text] [Related]
8. Identification of a binding site in c-Ab1 tyrosine kinase for the C-terminal repeated domain of RNA polymerase II. Baskaran R; Chiang GG; Wang JY Mol Cell Biol; 1996 Jul; 16(7):3361-9. PubMed ID: 8668151 [TBL] [Abstract][Full Text] [Related]
9. Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II. Chambers RS; Dahmus ME J Biol Chem; 1994 Oct; 269(42):26243-8. PubMed ID: 7929341 [TBL] [Abstract][Full Text] [Related]
10. Transcription by RNA polymerase II and the CTD-chromatin crosstalk. Singh N; Asalam M; Ansari MO; Gerasimova NS; Studitsky VM; Akhtar MS Biochem Biophys Res Commun; 2022 Apr; 599():81-86. PubMed ID: 35176629 [TBL] [Abstract][Full Text] [Related]
11. Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain. Pineda G; Shen Z; de Albuquerque CP; Reynoso E; Chen J; Tu CC; Tang W; Briggs S; Zhou H; Wang JY BMC Res Notes; 2015 Oct; 8():616. PubMed ID: 26515650 [TBL] [Abstract][Full Text] [Related]
12. Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA Polymerase II. Yogesha SD; Mayfield JE; Zhang Y Molecules; 2014 Jan; 19(2):1481-511. PubMed ID: 24473209 [TBL] [Abstract][Full Text] [Related]
13. Tyrosine-1 and threonine-4 phosphorylation marks complete the RNA polymerase II CTD phospho-code. Heidemann M; Eick D RNA Biol; 2012 Sep; 9(9):1144-6. PubMed ID: 22960391 [TBL] [Abstract][Full Text] [Related]
14. Dephosphorylation of RNA polymerase II by CTD-phosphatase FCP1 is inhibited by phospho-CTD associating proteins. Palancade B; Marshall NF; Tremeau-Bravard A; Bensaude O; Dahmus ME; Dubois MF J Mol Biol; 2004 Jan; 335(2):415-24. PubMed ID: 14672652 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation state of the RNA polymerase II C-terminal domain (CTD) in heat-shocked cells. Possible involvement of the stress-activated mitogen-activated protein (MAP) kinases. Venetianer A; Dubois MF; Nguyen VT; Bellier S; Seo SJ; Bensaude O Eur J Biochem; 1995 Oct; 233(1):83-92. PubMed ID: 7588777 [TBL] [Abstract][Full Text] [Related]
17. Enhanced phosphorylation of the C-terminal domain of RNA polymerase II upon serum stimulation of quiescent cells: possible involvement of MAP kinases. Dubois MF; Nguyen VT; Dahmus ME; Pagès G; Pouysségur J; Bensaude O EMBO J; 1994 Oct; 13(20):4787-97. PubMed ID: 7957047 [TBL] [Abstract][Full Text] [Related]
18. Regulation of RNA polymerase II activity by CTD phosphorylation and cell cycle control. Oelgeschläger T J Cell Physiol; 2002 Feb; 190(2):160-9. PubMed ID: 11807820 [TBL] [Abstract][Full Text] [Related]
19. RNA polymerases IIA and IIO have distinct roles during transcription from the TATA-less murine dihydrofolate reductase promoter. Kang ME; Dahmus ME J Biol Chem; 1993 Nov; 268(33):25033-40. PubMed ID: 8227067 [TBL] [Abstract][Full Text] [Related]
20. Role of the C-terminal domain of RNA polymerase II in expression of small nuclear RNA genes. Egloff S; Murphy S Biochem Soc Trans; 2008 Jun; 36(Pt 3):537-9. PubMed ID: 18482001 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]