BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 34458936)

  • 1. Endo-xylanases from Cohnella sp. AR92 aimed at xylan and arabinoxylan conversion into value-added products.
    Hero JS; Pisa JH; Romero CM; Nordberg Karlsson E; Linares-Pastén JA; Martinez MA
    Appl Microbiol Biotechnol; 2021 Sep; 105(18):6759-6778. PubMed ID: 34458936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genome-proteome-based approach for xylan degradation by Cohnella sp. AR92.
    Pisa JH; Hero JS; Romero HG; Martínez MA
    Environ Microbiol Rep; 2022 Oct; 14(5):755-765. PubMed ID: 35940859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agrowastes as Feedstock for the Production of Endo-β-Xylanase from Cohnella sp. Strain AR92.
    Pisa JH; Manfredi AP; Perotti NI; Romero HG; Breccia JD; Martínez MA
    J Mol Microbiol Biotechnol; 2017; 27(5):277-288. PubMed ID: 29166641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sugarcane bagasse derived xylooligosaccharides produced by an arabinofuranosidase/xylobiohydrolase from Bifidobacterium longum in synergism with xylanases.
    Capetti CCM; Ontañon O; Navas LE; Campos E; Simister R; Dowle A; Liberato MV; Pellegrini VOA; Gómez LD; Polikarpov I
    Carbohydr Polym; 2024 Sep; 339():122248. PubMed ID: 38823916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the arabinoxylan-degrading machinery of the thermophilic bacterium Herbinix hemicellulosilytica-Six new xylanases, three arabinofuranosidases and one xylosidase.
    Mechelke M; Koeck DE; Broeker J; Roessler B; Krabichler F; Schwarz WH; Zverlov VV; Liebl W
    J Biotechnol; 2017 Sep; 257():122-130. PubMed ID: 28450260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of an endo-xylanase from Trichoderma sp., with xylobiose as the main product from xylan hydrolysis.
    Fu LH; Jiang N; Li CX; Luo XM; Zhao S; Feng JX
    World J Microbiol Biotechnol; 2019 Oct; 35(11):171. PubMed ID: 31673786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Considerations on the Use of Endo-Xylanases for the Production of prebiotic Xylooligosaccharides from Biomass.
    Linares-Pasten JA; Aronsson A; Karlsson EN
    Curr Protein Pept Sci; 2018; 19(1):48-67. PubMed ID: 27670134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization of the xylan hydrolysis profile of the extracellular endo-xylanase from Geobacillus thermodenitrificans T12.
    Daas MJA; Martínez PM; van de Weijer AHP; van der Oost J; de Vos WM; Kabel MA; van Kranenburg R
    BMC Biotechnol; 2017 May; 17(1):44. PubMed ID: 28521816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the modes of action and synergies of xylanases by analysis of xylooligosaccharide profiles over time using fluorescence-assisted carbohydrate electrophoresis.
    Gong W; Zhang H; Tian L; Liu S; Wu X; Li F; Wang L
    Electrophoresis; 2016 Jul; 37(12):1640-50. PubMed ID: 27060349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of corncob into high-value xylooligosaccharides using glycoside hydrolase families 10 and 11 xylanases from Trichoderma asperellum ND-1.
    Zheng F; Chen J; Wang J; Zhuang H
    Bioresour Technol; 2024 Feb; 394():130249. PubMed ID: 38154735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a recombinant GH10 endoxylanase from Thermoascus aurantiacus for xylooligosaccharide production from sugarcane bagasse and probiotic bacterial growth.
    Nascimento CEO; Simões LCO; Pereira JC; da Silva RR; de Lima EA; de Almeida GC; Penna ALB; Boscolo M; Gomes E; da Silva R
    J Biotechnol; 2022 Mar; 347():1-8. PubMed ID: 35151712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of hemicellulolytic enzyme mixtures for plant biomass deconstruction on target biotechnological applications.
    Goldbeck R; Damásio AR; Gonçalves TA; Machado CB; Paixão DA; Wolf LD; Mandelli F; Rocha GJ; Ruller R; Squina FM
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8513-25. PubMed ID: 25077777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of xylan into value-added biocommodities using Thermobacillus composti GH10 xylanase.
    Sepulchro AGV; Pellegrini VOA; Briganti L; de Araujo EA; de Araujo SS; Polikarpov I
    Carbohydr Polym; 2020 Nov; 247():116714. PubMed ID: 32829841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel glycoside hydrolase 43-like enzyme from
    Salas-Veizaga DM; Rocabado-Villegas LR; Linares-Pastén JA; Gudmundsdottir EE; Hreggvidsson GO; Álvarez-Aliaga MT; Adlercreutz P; Nordberg Karlsson E
    Appl Environ Microbiol; 2024 Apr; 90(4):e0222323. PubMed ID: 38497645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Endoxylanases of the Moderately Thermophilic Polysaccharide-Degrading Bacterium Melioribacter roseus.
    Rakitin AL; Ermakova AY; Ravin NV
    J Microbiol Biotechnol; 2015 Sep; 25(9):1476-84. PubMed ID: 25951846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase.
    Falck P; Aronsson A; Grey C; Stålbrand H; Nordberg Karlsson E; Adlercreutz P
    Bioresour Technol; 2014 Dec; 174():118-25. PubMed ID: 25463790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Characterization of a Novel, Cold-Adapted d-Xylobiose- and d-Xylose-Releasing Endo-β-1,4-xylanase from an Antarctic Soil Bacterium,
    Kim DY; Kim J; Lee YM; Lee JS; Shin DH; Ku BH; Son KH; Park HY
    Biomolecules; 2021 Apr; 11(5):. PubMed ID: 33946575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of xylanases from Aureobasidium pullulans CCT 1261 and its application in the production of xylooligosaccharides.
    Corrêa Junior LCS; Gautério GV; de Medeiros Burkert JF; Kalil SJ
    World J Microbiol Biotechnol; 2022 Feb; 38(3):52. PubMed ID: 35132493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase.
    McCleary BV; McKie VA; Draga A; Rooney E; Mangan D; Larkin J
    Carbohydr Res; 2015 Apr; 407():79-96. PubMed ID: 25723624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two degradation strategies for overcoming the recalcitrance of natural lignocellulosic xylan by polysaccharides-binding GH10 and GH11 xylanases of filamentous fungi.
    Miao Y; Li P; Li G; Liu D; Druzhinina IS; Kubicek CP; Shen Q; Zhang R
    Environ Microbiol; 2017 Mar; 19(3):1054-1064. PubMed ID: 27878934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.