These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34458939)

  • 1. Ligand binding: evaluating the contribution of the water molecules network using the Fragment Molecular Orbital method.
    Lukac I; Wyatt PG; Gilbert IH; Zuccotto F
    J Comput Aided Mol Des; 2021 Oct; 35(10):1025-1036. PubMed ID: 34458939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic Insight into the Effects of Water Displacement and Rearrangement upon Ligand Modifications using Molecular Dynamics Simulations.
    Wahl J; Smieško M
    ChemMedChem; 2018 Jul; 13(13):1325-1335. PubMed ID: 29726604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration properties of ligands and drugs in protein binding sites: tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies.
    García-Sosa AT
    J Chem Inf Model; 2013 Jun; 53(6):1388-405. PubMed ID: 23662606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization.
    Michel J; Tirado-Rives J; Jorgensen WL
    J Am Chem Soc; 2009 Oct; 131(42):15403-11. PubMed ID: 19778066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules.
    Amadasi A; Spyrakis F; Cozzini P; Abraham DJ; Kellogg GE; Mozzarelli A
    J Mol Biol; 2006 Apr; 358(1):289-309. PubMed ID: 16497327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of Thermodynamic Properties of Bound Water Molecules.
    Yang Y; Abdallah AHA; Lill MA
    Methods Mol Biol; 2018; 1762():389-402. PubMed ID: 29594782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies to calculate water binding free energies in protein-ligand complexes.
    Bodnarchuk MS; Viner R; Michel J; Essex JW
    J Chem Inf Model; 2014 Jun; 54(6):1623-33. PubMed ID: 24684745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction of dynamic protein-ligand binding using P-score ranking.
    Ibrahim PEGF; Zuccotto F; Zachariae U; Gilbert I; Bodkin M
    J Comput Chem; 2024 Jul; 45(20):1762-1778. PubMed ID: 38647338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method.
    Otsuka T; Okimoto N; Taiji M
    J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization.
    Liu J; He X; Zhang JZ
    J Chem Inf Model; 2013 Jun; 53(6):1306-14. PubMed ID: 23651068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series.
    Güssregen S; Matter H; Hessler G; Lionta E; Heil J; Kast SM
    J Chem Inf Model; 2017 Jul; 57(7):1652-1666. PubMed ID: 28565907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating Free Energies of Binding and Conservation of Crystallographic Waters Using SZMAP.
    Bayden AS; Moustakas DT; Joseph-McCarthy D; Lamb ML
    J Chem Inf Model; 2015 Aug; 55(8):1552-65. PubMed ID: 26176600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of water molecules in protein binding sites.
    Barillari C; Taylor J; Viner R; Essex JW
    J Am Chem Soc; 2007 Mar; 129(9):2577-87. PubMed ID: 17288418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions.
    Poornima CS; Dean PM
    J Comput Aided Mol Des; 1995 Dec; 9(6):500-12. PubMed ID: 8789192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.
    Uehara S; Tanaka S
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27886114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining solvent thermodynamic profiles with functionality maps of the Hsp90 binding site to predict the displacement of water molecules.
    Haider K; Huggins DJ
    J Chem Inf Model; 2013 Oct; 53(10):2571-86. PubMed ID: 24070451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand binding to protein-binding pockets with wet and dry regions.
    Wang L; Berne BJ; Friesner RA
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1326-30. PubMed ID: 21205906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of water displacement energetics in protein binding sites with grid cell theory.
    Gerogiokas G; Southey MW; Mazanetz MP; Heifetz A; Bodkin M; Law RJ; Michel J
    Phys Chem Chem Phys; 2015 Apr; 17(13):8416-26. PubMed ID: 25600031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attach-Pull-Release Calculations of Ligand Binding and Conformational Changes on the First BRD4 Bromodomain.
    Heinzelmann G; Henriksen NM; Gilson MK
    J Chem Theory Comput; 2017 Jul; 13(7):3260-3275. PubMed ID: 28564537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.