These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34458983)

  • 1. Molecular framework underlying floral bilateral symmetry and nectar spur development in Tropaeolum, an atypical member of the Brassicales.
    Martínez-Salazar S; González F; Alzate JF; Pabón-Mora N
    Am J Bot; 2021 Aug; 108(8):1315-1330. PubMed ID: 34458983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving the non-papilionaceous flower of Camoensia scandens, a papilionoid legume of the core genistoid clade: development, glands and insights into the pollination and systematics of the group.
    Leite VG; Teixeira SP; Godoy F; Paulino JV; Mansano VF
    J Plant Res; 2021 Jul; 134(4):823-839. PubMed ID: 33847845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development.
    Ballerini ES; Kramer EM; Hodges SA
    BMC Genomics; 2019 Aug; 20(1):668. PubMed ID: 31438840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Floral morphology and structure of Emblingia calceoliflora (Emblingiaceae, Brassicales): questions and answers.
    Tobe H
    J Plant Res; 2015 May; 128(3):481-95. PubMed ID: 25666829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of floral MADS-box genes in Sinofranchetia chinensis (Lardizabalaceae): implications for the nature of the nectar leaves.
    Hu J; Zhang J; Shan H; Chen Z
    Ann Bot; 2012 Jul; 110(1):57-69. PubMed ID: 22652421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in expression pattern of the teosinte branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order.
    Bartlett ME; Specht CD
    Am J Bot; 2011 Feb; 98(2):227-43. PubMed ID: 21613112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex developmental and transcriptional dynamics underlie pollinator-driven evolutionary transitions in nectar spur morphology in Aquilegia (columbine).
    Edwards MB; Ballerini ES; Kramer EM
    Am J Bot; 2022 Sep; 109(9):1360-1381. PubMed ID: 35971626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of RADIALIS and DIVARICATA gene lineages in flowering plants with an expanded sampling in non-core eudicots.
    Madrigal Y; Alzate JF; González F; Pabón-Mora N
    Am J Bot; 2019 Mar; 106(3):334-351. PubMed ID: 30845367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of nectar spur length in a clade of Linaria reflects changes in cell division rather than in cell expansion.
    Cullen E; Fernández-Mazuecos M; Glover BJ
    Ann Bot; 2018 Nov; 122(5):801-809. PubMed ID: 29370374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Duplication and Differential Expression of Flower Symmetry Genes in
    Ramage E; Soza VL; Yi J; Deal H; Chudgar V; Hall BD; Di Stilio VS
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Floral ontogeny in Lespedeza thunbergii (Leguminosae: Papilionoideae: Desmodieae): variations from the unidirectional mode of organ formation.
    Prenner G
    J Plant Res; 2004 Aug; 117(4):297-302. PubMed ID: 15235921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of symmetry genes and the evolution of floral morphologies.
    Hileman LC; Kramer EM; Baum DA
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12814-9. PubMed ID: 14555758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re"CYC"ling molecular regulators in the evolution and development of flower symmetry.
    Spencer V; Kim M
    Semin Cell Dev Biol; 2018 Jul; 79():16-26. PubMed ID: 28864346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Floral symmetry: the geometry of plant reproduction.
    Jiang Y; Moubayidin L
    Emerg Top Life Sci; 2022 Sep; 6(3):259-269. PubMed ID: 35994008
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Ballerini ES; Min Y; Edwards MB; Kramer EM; Hodges SA
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22552-22560. PubMed ID: 32848061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Floral biology of Tropaeolum majus L. and its relation with Astylus variegatus activity (Germar 1824).
    Silva ME; Mussury RM; Vieira Mdo C; Alves Junior VV; Pereira ZV; Scalon SP
    An Acad Bras Cienc; 2011 Dec; 83(4):1251-8. PubMed ID: 22011767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene duplication and relaxation from selective constraints of GCYC genes correlated with various floral symmetry patterns in Asiatic Gesneriaceae tribe Trichosporeae.
    Hsin KT; Lu JY; Möller M; Wang CN
    PLoS One; 2019; 14(1):e0210054. PubMed ID: 30699126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stepwise evolution of corolla symmetry in CYCLOIDEA2-like and RADIALIS-like gene expression patterns in Lamiales.
    Zhong J; Kellogg EA
    Am J Bot; 2015 Aug; 102(8):1260-7. PubMed ID: 26290549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome.
    Preston JC; Martinez CC; Hileman LC
    Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2343-8. PubMed ID: 21282634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delphinieae flowers originated from the rewiring of interactions between duplicated and diversified floral organ identity and symmetry genes.
    Zhao H; Liao H; Li S; Zhang R; Dai J; Ma P; Wang T; Wang M; Yuan Y; Fu X; Cheng J; Duan X; Xie Y; Zhang P; Kong H; Shan H
    Plant Cell; 2023 Mar; 35(3):994-1012. PubMed ID: 36560915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.