These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34459534)

  • 1. Direct Evidence on the Mechanism of Methane Conversion under Non-oxidative Conditions over Iron-modified Silica: The Role of Propargyl Radicals Unveiled.
    Puente-Urbina A; Pan Z; Paunović V; Šot P; Hemberger P; van Bokhoven JA
    Angew Chem Int Ed Engl; 2021 Nov; 60(45):24002-24007. PubMed ID: 34459534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Operando Photoelectron Photoion Coincidence Spectroscopy Unravels Mechanistic Fingerprints of Propane Activation by Catalytic Oxyhalogenation.
    Zichittella G; Hemberger P; Holzmeier F; Bodi A; Pérez-Ramírez J
    J Phys Chem Lett; 2020 Feb; 11(3):856-863. PubMed ID: 31935108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons.
    Cesarini A; Mitchell S; Zichittella G; Agrachev M; Schmid SP; Jeschke G; Pan Z; Bodi A; Hemberger P; Pérez-Ramírez J
    Nat Catal; 2022; 5(7):605-614. PubMed ID: 35892076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen.
    Guo X; Fang G; Li G; Ma H; Fan H; Yu L; Ma C; Wu X; Deng D; Wei M; Tan D; Si R; Zhang S; Li J; Sun L; Tang Z; Pan X; Bao X
    Science; 2014 May; 344(6184):616-9. PubMed ID: 24812398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of aromatics formation in fuel-rich methane oxy-combustion with an automatically generated pressure-dependent mechanism.
    Chu TC; Buras ZJ; Oßwald P; Liu M; Goldman MJ; Green WH
    Phys Chem Chem Phys; 2019 Jan; 21(2):813-832. PubMed ID: 30556072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combustion in the future: The importance of chemistry.
    Kohse-Höinghaus K
    Proc Combust Inst; 2020 Sep; ():. PubMed ID: 33013234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectivity Control by Relay Catalysis in CO and CO
    Cheng K; Li Y; Kang J; Zhang Q; Wang Y
    Acc Chem Res; 2024 Mar; 57(5):714-725. PubMed ID: 38349801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling Radical and Oxygenate Routes in the Oxidative Dehydrogenation of Propane over Boron Nitride.
    Zhang Z; Tian J; Wu X; Surin I; Pérez-Ramírez J; Hemberger P; Bodi A
    J Am Chem Soc; 2023 Apr; 145(14):7910-7917. PubMed ID: 36867720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methane Activation by Gas Phase Atomic Clusters.
    Zhao YX; Li ZY; Yang Y; He SG
    Acc Chem Res; 2018 Nov; 51(11):2603-2610. PubMed ID: 30289247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing Active Sites and Reaction Pathways in Methane Non-Oxidative Coupling over Iron-Containing Zeolites.
    Zhang H; Bolshakov A; Meena R; Garcia GA; Dugulan AI; Parastaev A; Li G; Hensen EJM; Kosinov N
    Angew Chem Int Ed Engl; 2023 Aug; 62(32):e202306196. PubMed ID: 37395384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects.
    Schwach P; Pan X; Bao X
    Chem Rev; 2017 Jul; 117(13):8497-8520. PubMed ID: 28475304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic and microkinetic study of non-oxidative methane coupling on a single-atom iron catalyst.
    Kim SK; Kim HW; Han SJ; Lee SW; Shin J; Kim YT
    Commun Chem; 2020 May; 3(1):58. PubMed ID: 36703477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of magnetization on catalytic pathways of non-oxidative methane activation on neutral iron carbide clusters.
    Kumar M; Dar MA; Katiyar A; Agrawal R; Shenai PM; Srinivasan V
    Phys Chem Chem Phys; 2022 May; 24(19):11668-11679. PubMed ID: 35506522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operando Photoelectron Photoion Coincidence Spectroscopy to Detect Short-lived Intermediates in Catalysis.
    Zhang Z; Pérez-Ramírez J; Van Bokhoven JA; Bodi A; Hemberger P
    Chimia (Aarau); 2023 Mar; 77(3):132-138. PubMed ID: 38047816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in heterogeneous catalysis for the nonoxidative conversion of methane.
    Zhang T
    Chem Sci; 2021 Oct; 12(38):12529-12545. PubMed ID: 34703539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Non-Oxidative Methane Conversion in a Millisecond Catalytic Wall Reactor.
    Oh SC; Schulman E; Zhang J; Fan J; Pan Y; Meng J; Liu D
    Angew Chem Int Ed Engl; 2019 May; 58(21):7083-7086. PubMed ID: 30887653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen-Abstraction/Acetylene-Addition Exposed.
    Yang T; Troy TP; Xu B; Kostko O; Ahmed M; Mebel AM; Kaiser RI
    Angew Chem Int Ed Engl; 2016 Nov; 55(48):14983-14987. PubMed ID: 27781351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Impact of Hydrogen Activation by SrCe
    Cheng S; Oh SC; Sakbodin M; Qiu L; Diao Y; Liu D
    Front Chem; 2021; 9():806464. PubMed ID: 35083196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-oxidative Methane Coupling over Silica versus Silica-Supported Iron(II) Single Sites.
    Šot P; Newton MA; Baabe D; Walter MD; van Bavel AP; Horton AD; Copéret C; van Bokhoven JA
    Chemistry; 2020 Jun; 26(36):8012-8016. PubMed ID: 32154949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methyl radical chemistry in non-oxidative methane activation over metal single sites.
    Huang X; Eggart D; Qin G; Sarma BB; Gaur A; Yang J; Pan Y; Li M; Hao J; Yu H; Zimina A; Guo X; Xiao J; Grunwaldt JD; Pan X; Bao X
    Nat Commun; 2023 Sep; 14(1):5716. PubMed ID: 37714864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.