These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 34459540)
21. Tri-Spiral Donor for High Efficiency and Versatile Blue Thermally Activated Delayed Fluorescence Materials. Li W; Li B; Cai X; Gan L; Xu Z; Li W; Liu K; Chen D; Su SJ Angew Chem Int Ed Engl; 2019 Aug; 58(33):11301-11305. PubMed ID: 31192492 [TBL] [Abstract][Full Text] [Related]
23. Achieving Nearly 30% External Quantum Efficiency for Orange-Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8-Naphthalimide-Acridine Hybrids. Zeng W; Lai HY; Lee WK; Jiao M; Shiu YJ; Zhong C; Gong S; Zhou T; Xie G; Sarma M; Wong KT; Wu CC; Yang C Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29218854 [TBL] [Abstract][Full Text] [Related]
24. Exceeding 30 % External Quantum Efficiency in Non-doped OLEDs Utilizing Solution Processable TADF Emitters with High Horizontal Dipole Orientation via Anchoring Strategy. Zhao G; Liu D; Wang P; Huang X; Chen H; Zhang Y; Zhang D; Jiang W; Sun Y; Duan L Angew Chem Int Ed Engl; 2022 Nov; 61(45):e202212861. PubMed ID: 36129450 [TBL] [Abstract][Full Text] [Related]
25. Robust Luminescent Molecules with High-Level Reverse Intersystem Crossing for Efficient Near Ultraviolet Organic Light-Emitting Diodes. Chen J; Liu H; Guo J; Wang J; Qiu N; Xiao S; Chi J; Yang D; Ma D; Zhao Z; Tang BZ Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202116810. PubMed ID: 34981618 [TBL] [Abstract][Full Text] [Related]
26. Solution-Processable Chiral Boron Complexes for Circularly Polarized Red Thermally Activated Delayed Fluorescent Devices. Xue P; Wang X; Wang W; Zhang J; Wang Z; Jin J; Zheng C; Li P; Xie G; Chen R ACS Appl Mater Interfaces; 2021 Oct; 13(40):47826-47834. PubMed ID: 34587742 [TBL] [Abstract][Full Text] [Related]
27. Realizing High-Efficiency Orange-Red Thermally Activated Delayed Fluorescence Materials through the Construction of Intramolecular Noncovalent Interactions. Zhao T; Jiang S; Wang Y; Hu J; Lin FL; Meng L; Gao P; Chen XL; Lu CZ ACS Appl Mater Interfaces; 2023 Jun; 15(25):30543-30552. PubMed ID: 37315213 [TBL] [Abstract][Full Text] [Related]
28. Creating Efficient Red Thermally Activated Delayed Fluorescence Materials with Cyano-Substituted 11,12-Diphenyldipyrido[3,2-a:2',3'-c]phenazine Acceptors. Bai Z; Wang J; Zou P; Jiang R; Yang D; Ma D; Tang BZ; Zhao Z Chemistry; 2024 Mar; 30(14):e202303990. PubMed ID: 38060300 [TBL] [Abstract][Full Text] [Related]
29. Aggregation-Induced Delayed Fluorescence Based on Donor/Acceptor-Tethered Janus Carborane Triads: Unique Photophysical Properties of Nondoped OLEDs. Furue R; Nishimoto T; Park IS; Lee J; Yasuda T Angew Chem Int Ed Engl; 2016 Jun; 55(25):7171-5. PubMed ID: 27145481 [TBL] [Abstract][Full Text] [Related]
30. Deep Blue Fluorescent Material with an Extremely High Ratio of Horizontal Orientation to Enhance Light Outcoupling Efficiency (44%) and External Quantum Efficiency in Doped and Non-Doped Organic Light-Emitting Diodes. Lee JH; Lin HY; Chen CH; Lee YT; Chiu TL; Lee JH; Chen CT; Adachi C ACS Appl Mater Interfaces; 2021 Jul; 13(29):34605-34615. PubMed ID: 34264644 [TBL] [Abstract][Full Text] [Related]
32. A Feasible Strategy for a Highly Efficient Thermally Activated Delayed Fluorescence Emitter Over 900 nm Based on Phenalenone Derivatives. Ma B; Ding Z; Liu D; Zhou Z; Zhang K; Dang D; Zhang S; Su SJ; Zhu W; Liu Y Chemistry; 2023 Jul; 29(41):e202301197. PubMed ID: 37154226 [TBL] [Abstract][Full Text] [Related]
34. Efficient Circularly Polarized Electroluminescence from Achiral Luminescent Materials. Xu L; Liu H; Peng X; Shen P; Tang BZ; Zhao Z Angew Chem Int Ed Engl; 2023 May; 62(20):e202300492. PubMed ID: 36825493 [TBL] [Abstract][Full Text] [Related]
35. Realizing efficient blue and deep-blue delayed fluorescence materials with record-beating electroluminescence efficiencies of 43.4. Fu Y; Liu H; Tang BZ; Zhao Z Nat Commun; 2023 Apr; 14(1):2019. PubMed ID: 37037820 [TBL] [Abstract][Full Text] [Related]
36. Design of Thermally Activated Delayed Fluorescence Materials: Transition from Carbonyl to Amide-Based Acceptor. Luo A; Bao Y; Liu J; Yang Y; Deng Y; You J; Bin Z Angew Chem Int Ed Engl; 2024 Oct; 63(40):e202411464. PubMed ID: 38993056 [TBL] [Abstract][Full Text] [Related]
37. Quinoxaline and Pyrido[x,y-b]pyrazine-Based Emitters: Tuning Normal Fluorescence to Thermally Activated Delayed Fluorescence and Emitting Color over the Entire Visible-Light Range. Huang T; Liu D; Jiang J; Jiang W Chemistry; 2019 Aug; 25(46):10926-10937. PubMed ID: 31210382 [TBL] [Abstract][Full Text] [Related]
39. Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System. Mamada M; Inada K; Komino T; Potscavage WJ; Nakanotani H; Adachi C ACS Cent Sci; 2017 Jul; 3(7):769-777. PubMed ID: 28776019 [TBL] [Abstract][Full Text] [Related]
40. Simultaneously enhancing the planarity and electron-donating capability of donors for through-space charge transfer TADF towards deep-red emission. Song XF; Jiang C; Li N; Miao J; Li K; Yang C Chem Sci; 2023 Nov; 14(43):12246-12254. PubMed ID: 37969606 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]