These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34459586)

  • 1. High-Temperature Carbonized Ceria Thermophotovoltaic Emitter beyond Tungsten.
    Oh S; Cho JW; Jeong D; Lee K; Lee EJ; Shin S; Kim SK; Nam Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42724-42731. PubMed ID: 34459586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermophotovoltaic efficiency of 40.
    LaPotin A; Schulte KL; Steiner MA; Buznitsky K; Kelsall CC; Friedman DJ; Tervo EJ; France RM; Young MR; Rohskopf A; Verma S; Wang EN; Henry A
    Nature; 2022 Apr; 604(7905):287-291. PubMed ID: 35418635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Tunneling Mediated Sub-Skin-Depth High Emissivity Tungsten Radiators.
    Cho JW; Lee KJ; Lee TI; Kim YB; Choi DG; Nam Y; Kim SK
    Nano Lett; 2019 Oct; 19(10):7093-7099. PubMed ID: 31469959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting.
    Chang CC; Kort-Kamp WJM; Nogan J; Luk TS; Azad AK; Taylor AJ; Dalvit DAR; Sykora M; Chen HT
    Nano Lett; 2018 Dec; 18(12):7665-7673. PubMed ID: 30395478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Selectivity Planar Thermal Emitter with a Stable Temperature over 1400 K for a Thermophotovoltaic System.
    Wang J; Wu Z; Liu Y; Hou S; Qiao Y; Tang Z; Mao J; Zhang Q; Cao F
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49123-49131. PubMed ID: 37842846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mie-Metamaterials-Based Thermal Emitter for Near-Field Thermophotovoltaic Systems.
    Ghanekar A; Tian Y; Zhang S; Cui Y; Zheng Y
    Materials (Basel); 2017 Jul; 10(8):. PubMed ID: 28773241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Module-Level Polaritonic Thermophotovoltaic Emitters via Hierarchical Sequential Learning.
    Wang Q; Huang Z; Li J; Huang GY; Wang D; Zhang H; Guo J; Ding M; Chen J; Zhang Z; Rui Z; Shang W; Xu JY; Zhang J; Shiomi J; Fu T; Deng T; Johnson SG; Xu H; Cui K
    Nano Lett; 2023 Feb; 23(4):1144-1151. PubMed ID: 36749930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions.
    Chirumamilla M; Krishnamurthy GV; Rout SS; Ritter M; Störmer M; Petrov AY; Eich M
    Sci Rep; 2020 Feb; 10(1):3605. PubMed ID: 32107414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Temperature Selective Emitter Design and Materials: Titanium Aluminum Nitride Alloys for Thermophotovoltaics.
    Jeon N; Mandia DJ; Gray SK; Foley JJ; Martinson ABF
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41347-41355. PubMed ID: 31652047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin-film 'Thermal Well' Emitters and Absorbers for High-Efficiency Thermophotovoltaics.
    Tong JK; Hsu WC; Huang Y; Boriskina SV; Chen G
    Sci Rep; 2015 Jun; 5():10661. PubMed ID: 26030711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems.
    Ghanekar A; Lin L; Zheng Y
    Opt Express; 2016 May; 24(10):A868-77. PubMed ID: 27409959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tungsten-based metamaterial emitter for solar thermophotovoltaic systems.
    Cao Y; Zhang H; Chen N; Liu H; Feng Y; Wu X
    Phys Chem Chem Phys; 2024 May; 26(18):13909-13914. PubMed ID: 38666381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiconductor-based selective emitter with a sharp cutoff for thermophotovoltaic energy conversion.
    Ni Q; Ramesh R; Chen CA; Wang L
    Opt Lett; 2021 Jul; 46(13):3163-3166. PubMed ID: 34197406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal Design of Wavelength Selective Thermal Emitter for Thermophotovoltaic Applications.
    Ghanekar A; Sun M; Zhang Z; Zheng Y
    J Therm Sci Eng Appl; 2018 Feb; 10(1):0110041-110044. PubMed ID: 29051797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadening Near-Field Emission for Performance Enhancement in Thermophotovoltaics.
    Papadakis GT; Buddhiraju S; Zhao Z; Zhao B; Fan S
    Nano Lett; 2020 Mar; 20(3):1654-1661. PubMed ID: 31978305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metamaterial emitter for thermophotovoltaics stable up to 1400 °C.
    Chirumamilla M; Krishnamurthy GV; Knopp K; Krekeler T; Graf M; Jalas D; Ritter M; Störmer M; Petrov AY; Eich M
    Sci Rep; 2019 May; 9(1):7241. PubMed ID: 31076610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST.
    Du KK; Li Q; Lyu YB; Ding JC; Lu Y; Cheng ZY; Qiu M
    Light Sci Appl; 2017 Jan; 6(1):e16194. PubMed ID: 30167194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-Chip Near-Field Thermophotovoltaic Device Integrating a Thin-Film Thermal Emitter and Photovoltaic Cell.
    Inoue T; Koyama T; Kang DD; Ikeda K; Asano T; Noda S
    Nano Lett; 2019 Jun; 19(6):3948-3952. PubMed ID: 31137936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-field thermophotovoltaics for efficient heat to electricity conversion at high power density.
    Mittapally R; Lee B; Zhu L; Reihani A; Lim JW; Fan D; Forrest SR; Reddy P; Meyhofer E
    Nat Commun; 2021 Jul; 12(1):4364. PubMed ID: 34272361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.