These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 34459915)

  • 21. Activation of Strigolactone Biosynthesis by the DWARF14-LIKE/KARRIKIN-INSENSITIVE2 Pathway in Mycorrhizal Angiosperms, but Not in Arabidopsis, a Non-mycorrhizal Plant.
    Mashiguchi K; Morita R; Tanaka K; Kodama K; Kameoka H; Kyozuka J; Seto Y; Yamaguchi S
    Plant Cell Physiol; 2023 Sep; 64(9):1066-1078. PubMed ID: 37494415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings.
    Waters MT; Smith SM
    Mol Plant; 2013 Jan; 6(1):63-75. PubMed ID: 23142794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3.
    Zhao LH; Zhou XE; Yi W; Wu Z; Liu Y; Kang Y; Hou L; de Waal PW; Li S; Jiang Y; Scaffidi A; Flematti GR; Smith SM; Lam VQ; Griffin PR; Wang Y; Li J; Melcher K; Xu HE
    Cell Res; 2015 Nov; 25(11):1219-36. PubMed ID: 26470846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DIENELACTONE HYDROLASE LIKE PROTEIN1 negatively regulates the KAI2-ligand pathway in Marchantia polymorpha.
    Kameoka H; Shimazaki S; Mashiguchi K; Watanabe B; Komatsu A; Yoda A; Mizuno Y; Kodama K; Okamoto M; Nomura T; Yamaguchi S; Kyozuka J
    Curr Biol; 2023 Aug; 33(16):3505-3513.e5. PubMed ID: 37480853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional redundancy in the control of seedling growth by the karrikin signaling pathway.
    Stanga JP; Morffy N; Nelson DC
    Planta; 2016 Jun; 243(6):1397-406. PubMed ID: 26754282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy.
    Carbonnel S; Torabi S; Griesmann M; Bleek E; Tang Y; Buchka S; Basso V; Shindo M; Boyer FD; Wang TL; Udvardi M; Waters MT; Gutjahr C
    PLoS Genet; 2020 Dec; 16(12):e1009249. PubMed ID: 33370251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Desmethyl butenolides are optimal ligands for karrikin receptor proteins.
    Yao J; Scaffidi A; Meng Y; Melville KT; Komatsu A; Khosla A; Nelson DC; Kyozuka J; Flematti GR; Waters MT
    New Phytol; 2021 May; 230(3):1003-1016. PubMed ID: 33474738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural Basis of Karrikin and Non-natural Strigolactone Perception in Physcomitrella patens.
    Bürger M; Mashiguchi K; Lee HJ; Nakano M; Takemoto K; Seto Y; Yamaguchi S; Chory J
    Cell Rep; 2019 Jan; 26(4):855-865.e5. PubMed ID: 30673608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Karrikin Signaling Acts Parallel to and Additively with Strigolactone Signaling to Regulate Rice Mesocotyl Elongation in Darkness.
    Zheng J; Hong K; Zeng L; Wang L; Kang S; Qu M; Dai J; Zou L; Zhu L; Tang Z; Meng X; Wang B; Hu J; Zeng D; Zhao Y; Cui P; Wang Q; Qian Q; Wang Y; Li J; Xiong G
    Plant Cell; 2020 Sep; 32(9):2780-2805. PubMed ID: 32665307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different strategies of strigolactone and karrikin signals in regulating the resistance of
    Li W; Gupta A; Tian H; Nguyen KH; Tran CD; Watanabe Y; Tian C; Li K; Yang Y; Guo J; Luo Y; Miao Y; Phan Tran LS
    Plant Signal Behav; 2020 Sep; 15(9):1789321. PubMed ID: 32669036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PLANT EVOLUTION. Convergent evolution of strigolactone perception enabled host detection in parasitic plants.
    Conn CE; Bythell-Douglas R; Neumann D; Yoshida S; Whittington B; Westwood JH; Shirasu K; Bond CS; Dyer KA; Nelson DC
    Science; 2015 Jul; 349(6247):540-3. PubMed ID: 26228149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CYP707As are effectors of karrikin and strigolactone signalling pathways in Arabidopsis thaliana and parasitic plants.
    Brun G; Thoiron S; Braem L; Pouvreau JB; Montiel G; Lechat MM; Simier P; Gevaert K; Goormachtig S; Delavault P
    Plant Cell Environ; 2019 Sep; 42(9):2612-2626. PubMed ID: 31134630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elucidating connections between the strigolactone biosynthesis pathway, flavonoid production and root system architecture in Arabidopsis thaliana.
    Richmond BL; Coelho CL; Wilkinson H; McKenna J; Ratchinski P; Schwarze M; Frost M; Lagunas B; Gifford ML
    Physiol Plant; 2022 Mar; 174(2):e13681. PubMed ID: 35362177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strigolactone Hormones and Their Stereoisomers Signal through Two Related Receptor Proteins to Induce Different Physiological Responses in Arabidopsis.
    Scaffidi A; Waters MT; Sun YK; Skelton BW; Dixon KW; Ghisalberti EL; Flematti GR; Smith SM
    Plant Physiol; 2014 Jul; 165(3):1221-1232. PubMed ID: 24808100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis.
    Waters MT; Nelson DC; Scaffidi A; Flematti GR; Sun YK; Dixon KW; Smith SM
    Development; 2012 Apr; 139(7):1285-95. PubMed ID: 22357928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The origins and mechanisms of karrikin signalling.
    Waters MT; Scaffidi A; Flematti GR; Smith SM
    Curr Opin Plant Biol; 2013 Oct; 16(5):667-73. PubMed ID: 23954000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A conformational switch in the SCF-D3/MAX2 ubiquitin ligase facilitates strigolactone signalling.
    Tal L; Palayam M; Ron M; Young A; Britt A; Shabek N
    Nat Plants; 2022 May; 8(5):561-573. PubMed ID: 35484202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Signalling and responses to strigolactones and karrikins.
    Smith SM; Li J
    Curr Opin Plant Biol; 2014 Oct; 21():23-29. PubMed ID: 24996032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative Studies of Potential Binding Pocket Residues Reveal the Molecular Basis of ShHTL Receptors in the Perception of GR24 in
    Pang Z; Zhang X; Ma F; Liu J; Zhang H; Wang J; Wen X; Xi Z
    J Agric Food Chem; 2020 Nov; 68(45):12729-12737. PubMed ID: 33125848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-Function Analysis of SMAX1 Reveals Domains That Mediate Its Karrikin-Induced Proteolysis and Interaction with the Receptor KAI2.
    Khosla A; Morffy N; Li Q; Faure L; Chang SH; Yao J; Zheng J; Cai ML; Stanga J; Flematti GR; Waters MT; Nelson DC
    Plant Cell; 2020 Aug; 32(8):2639-2659. PubMed ID: 32434855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.