These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34459994)

  • 1. Defective GaAs nanoribbon-based biosensor for lung cancer biomarkers: a DFT study.
    Tarun T; Singh P; Kaur H; Walia GK; Randhawa DKK; Choudhary BC
    J Mol Model; 2021 Aug; 27(9):270. PubMed ID: 34459994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of the III-As monolayer with SARS-CoV-2 biomarkers: implications for biosensor development.
    Saha S; Sajib DI; Alam MK
    Phys Chem Chem Phys; 2024 Feb; 26(7):6242-6255. PubMed ID: 38305347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A density functional theory study on the interaction of toluene with transition metal decorated carbon nanotubes: a promising platform for early detection of lung cancer from human breath.
    Aasi A; Aghaei SM; Panchapakesan B
    Nanotechnology; 2020 Oct; 31(41):415707. PubMed ID: 32554899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early detection of lung cancer biomarkers in exhaled breath by modified armchair stanene nanoribbons.
    Mashhadbani M; Faizabadi E
    Phys Chem Chem Phys; 2023 Feb; 25(5):3875-3889. PubMed ID: 36647633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of uric acid adsorption on armchair silicene nanoribbons: a DFT study.
    Tarun T; Randhawa DKK; Singh P; Choudhary BC; Walia GK; Kaur N
    J Mol Model; 2020 Feb; 26(3):63. PubMed ID: 32108912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiality of phosphide-based nanotubes for breast cancer detection: A DFT investigation.
    Rahman AU; Saaduzzaman DM; Hasan SM; Sikder MKU
    Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38861946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared photoluminescence biosensing platform with gold nanorods-over-gallium arsenide nanohorn array.
    Zhang Y; Jiang T; Tang L
    Biosens Bioelectron; 2017 Nov; 97():278-284. PubMed ID: 28609719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional hydrogenated buckled gallium arsenide: an ab initio study.
    González-García A; López-Pérez W; González-Hernández R; Rivera-Julio J; Espejo C; Milośević MV; Peeters FM
    J Phys Condens Matter; 2020 Apr; 32(14):145502. PubMed ID: 31822645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First principles investigation on armchair zinc oxide nanoribbons as uric acid sensors.
    Singh P; Randhawa DKK; Tarun ; Choudhary BC; Walia GK; Kaur N
    J Mol Model; 2019 Dec; 26(1):4. PubMed ID: 31834483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green Phosphorene as a Promising Biosensor for Detection of Furan and p-Xylene as Biomarkers of Disease: A DFT Study.
    Aasi A; Aasi E; Mehdi Aghaei S; Panchapakesan B
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced sensing performance of armchair stanene nanoribbons for lung cancer early detection using an electric field.
    Mashhadbani M; Faizabadi E
    Phys Chem Chem Phys; 2023 Nov; 25(43):29459-29474. PubMed ID: 37882484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofunctionalisation of gallium arsenide with neutravidin.
    Santos Gomes B; Morgan DJ; Langbein W; Borri P; Masia F
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2399-2406. PubMed ID: 34794804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study.
    Mukherjee S; Banwait A; Grixti S; Koratkar N; Singh CV
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5373-5384. PubMed ID: 29350901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of electronic and optical properties of line defected armchair MoS
    Gholami Rudi S; Soleimani-Amiri S
    J Phys Condens Matter; 2021 Apr; 33(18):. PubMed ID: 33752179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, bonding nature, and binding energy of alkanethiolate on As-rich GaAs (001) surface: a density functional theory study.
    Voznyy O; Dubowski JJ
    J Phys Chem B; 2006 Nov; 110(47):23619-22. PubMed ID: 17125316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density Functional Theory Calculations Revealing Metal-like Band Structures and Work Function Variation for Ultrathin Gallium Arsenide (111) Surface Layers.
    Tan CS; Huang MH
    Chem Asian J; 2019 Jul; 14(13):2316-2321. PubMed ID: 31120175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene nanoribbon: An emerging and efficient flat molecular platform for advanced biosensing.
    Johnson AP; Sabu C; Swamy NK; Anto A; Gangadharappa HV; Pramod K
    Biosens Bioelectron; 2021 Jul; 184():113245. PubMed ID: 33895691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density-functional study of hydrogen cyanide adsorption on silicene nanoribbons.
    Walia GK; Randhawa DKK
    J Mol Model; 2018 Aug; 24(9):242. PubMed ID: 30121785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gallium arsenide deep-level optical emitter for fibre optics.
    Pan JL; McManis JE; Osadchy T; Grober L; Woodall JM; Kindlmann PJ
    Nat Mater; 2003 Jun; 2(6):375-8. PubMed ID: 12738958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic CO oxidation reaction over N-substituted graphene nanoribbon with edge defects.
    Esrafili MD; Mousavian P
    J Mol Graph Model; 2021 Nov; 108():108006. PubMed ID: 34388401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.