These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 34460246)
1. Dual High-Resolution α-Glucosidase and PTP1B Inhibition Profiling Combined with HPLC-PDA-HRMS-SPE-NMR Analysis for the Identification of Potentially Antidiabetic Chromene Meroterpenoids from Liang C; Kjaerulff L; Hansen PR; Kongstad KT; Staerk D J Nat Prod; 2021 Sep; 84(9):2454-2467. PubMed ID: 34460246 [TBL] [Abstract][Full Text] [Related]
2. Chromene meroterpenoids from Rhododendron dauricum L. and their anti-inflammatory effects. Zhang N; Xu Y; Sun D; Li Y; Li H; Chen L Phytochemistry; 2024 Sep; 225():114200. PubMed ID: 38936530 [TBL] [Abstract][Full Text] [Related]
3. Enantiomeric pairs of meroterpenoids from Rhododendron fastigiatum. Huang GH; Lei C; Zhu KX; Li JY; Li J; Hou AJ Chin J Nat Med; 2019 Dec; 17(12):963-969. PubMed ID: 31882052 [TBL] [Abstract][Full Text] [Related]
4. Potential of Polygonum cuspidatum Root as an Antidiabetic Food: Dual High-Resolution α-Glucosidase and PTP1B Inhibition Profiling Combined with HPLC-HRMS and NMR for Identification of Antidiabetic Constituents. Zhao Y; Chen MX; Kongstad KT; Jäger AK; Staerk D J Agric Food Chem; 2017 Jun; 65(22):4421-4427. PubMed ID: 28497962 [TBL] [Abstract][Full Text] [Related]
5. Identification of PTP1B and α-Glucosidase Inhibitory Serrulatanes from Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α-Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR. Wubshet SG; Tahtah Y; Heskes AM; Kongstad KT; Pateraki I; Hamberger B; Møller BL; Staerk D J Nat Prod; 2016 Apr; 79(4):1063-72. PubMed ID: 26960032 [TBL] [Abstract][Full Text] [Related]
6. Quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L. Zhao Y; Kongstad KT; Jäger AK; Nielsen J; Staerk D J Chromatogr A; 2018 Jun; 1556():55-63. PubMed ID: 29729863 [TBL] [Abstract][Full Text] [Related]
7. Protein tyrosine phosphatase 1B (PTP1B) inhibitory activity and glucosidase inhibitory activity of compounds isolated from Agrimonia pilosa. Na B; Nguyen PH; Zhao BT; Vo QH; Min BS; Woo MH Pharm Biol; 2016; 54(3):474-80. PubMed ID: 26084800 [TBL] [Abstract][Full Text] [Related]
8. Polyprenylated acylphloroglucinol meroterpenoids with PTP1B inhibition from Hypericum forrestii. Zong JF; Zhang MM; Zhou YB; Li J; Hou AJ; Lei C Fitoterapia; 2021 Sep; 153():104959. PubMed ID: 34111550 [TBL] [Abstract][Full Text] [Related]
9. Prenylated Phenolic Compounds from the Aerial Parts of Fan JR; Kuang Y; Dong ZY; Yi Y; Zhou YX; Li B; Qiao X; Ye M J Nat Prod; 2020 Apr; 83(4):814-824. PubMed ID: 32196343 [No Abstract] [Full Text] [Related]
10. Dual high-resolution inhibition profiling and HPLC-HRMS-SPE-NMR analysis for identification of α-glucosidase and radical scavenging inhibitors in Solanum americanum Mill. Silva EL; Almeida-Lafetá RC; Borges RM; Staerk D Fitoterapia; 2017 Apr; 118():42-48. PubMed ID: 28229941 [TBL] [Abstract][Full Text] [Related]
11. Nineteen New Flavanol-Fatty Alcohol Hybrids with α-Glucosidase and PTP1B Dual Inhibition: One Unusual Type of Antidiabetic Constituent from He XF; Chen JJ; Li TZ; Zhang XK; Guo YQ; Zhang XM; Hu J; Geng CA J Agric Food Chem; 2020 Oct; 68(41):11434-11448. PubMed ID: 32965110 [TBL] [Abstract][Full Text] [Related]
12. Anti-diabetic xanthones from the bark of Garcinia xanthochymus. Nguyen CN; Trinh BTD; Tran TB; Nguyen LT; Jäger AK; Nguyen LD Bioorg Med Chem Lett; 2017 Aug; 27(15):3301-3304. PubMed ID: 28624142 [TBL] [Abstract][Full Text] [Related]
13. Two Enantiomeric Pairs of Meroterpenoids from Rhododendron capitatum. Liao HB; Lei C; Gao LX; Li JY; Li J; Hou AJ Org Lett; 2015 Oct; 17(20):5040-3. PubMed ID: 26426956 [TBL] [Abstract][Full Text] [Related]
14. Diarylheptanoid-chalcone hybrids with PTP1B and α-glucosidase dual inhibition from Alpinia katsumadai. He XF; Chen JJ; Li TZ; Hu J; Zhang XM; Geng CA Bioorg Chem; 2021 Mar; 108():104683. PubMed ID: 33545534 [TBL] [Abstract][Full Text] [Related]
15. High-Resolution α-Glucosidase Inhibition Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of Antidiabetic Compounds in Eremanthus crotonoides (Asteraceae). Silva EL; Lobo JF; Vinther JM; Borges RM; Staerk D Molecules; 2016 Jun; 21(6):. PubMed ID: 27322221 [TBL] [Abstract][Full Text] [Related]
16. Enantiomeric Pairs of Meroterpenoids with Diverse Heterocyclic Systems from Rhododendron nyingchiense. Huang GH; Hu Z; Lei C; Wang PP; Yang J; Li JY; Li J; Hou AJ J Nat Prod; 2018 Aug; 81(8):1810-1818. PubMed ID: 30067363 [TBL] [Abstract][Full Text] [Related]
17. Triterpenoids and meroterpenoids with α-glucosidase inhibitory activities from the fruiting bodies of Ganoderma australe. Guo JC; Yang L; Ma QY; Ge YZ; Kong FD; Zhou LM; Fei Zhang ; Xie QY; Yu ZF; Dai HF; Zhao YX Bioorg Chem; 2021 Dec; 117():105448. PubMed ID: 34736135 [TBL] [Abstract][Full Text] [Related]
19. Unraveling the complexity of complex mixtures by combining high-resolution pharmacological, analytical and spectroscopic techniques: antidiabetic constituents in Chinese medicinal plants. Zhao Y; Kongstad KT; Liu Y; He C; Staerk D Faraday Discuss; 2019 Aug; 218(0):202-218. PubMed ID: 31119225 [TBL] [Abstract][Full Text] [Related]
20. Potential anti-diabetic isoprenoids and a long-chain δ-lactone from frangipani (Plumeria rubra). Zhang SN; Song HZ; Ma RJ; Liang CQ; Wang HS; Tan QG Fitoterapia; 2020 Oct; 146():104684. PubMed ID: 32634455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]