BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34460379)

  • 1. Solving the Family Traveling Salesperson Problem in the Adleman-Lipton Model Based on DNA Computing.
    Wu X; Wang Z; Wu T; Bao X
    IEEE Trans Nanobioscience; 2022 Jan; 21(1):75-85. PubMed ID: 34460379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the Potential of DNA Computing for Complex Big Data Problems: A Case Study on the Traveling Car Renter Problem.
    Wang ZC; Wu X; Liang K; Wu TH
    IEEE Trans Nanobioscience; 2024 Jul; 23(3):391-402. PubMed ID: 38709614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Parallel DNA Algorithm for Solving the Quota Traveling Salesman Problem Based on Biocomputing Model.
    Wang Z; Wu X; Wu T
    Comput Intell Neurosci; 2022; 2022():1450756. PubMed ID: 36093485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel bio-heuristic computing algorithm to solve the capacitated vehicle routing problem based on Adleman-Lipton model.
    Wang Z; Ren X; Ji Z; Huang W; Wu T
    Biosystems; 2019 Oct; 184():103997. PubMed ID: 31369836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A DNA algorithm for the job shop scheduling problem based on the Adleman-Lipton model.
    Tian X; Liu X; Zhang H; Sun M; Zhao Y
    PLoS One; 2020; 15(12):e0242083. PubMed ID: 33264317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A parallel algorithm for solving the n-queens problem based on inspired computational model.
    Wang Z; Huang D; Tan J; Liu T; Zhao K; Li L
    Biosystems; 2015 May; 131():22-9. PubMed ID: 25817410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new parallel DNA algorithm to solve the task scheduling problem based on inspired computational model.
    Wang Z; Ji Z; Wang X; Wu T; Huang W
    Biosystems; 2017 Dec; 162():59-65. PubMed ID: 28890344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Algorithm for Solving the Prize Collecting Traveling Salesman Problem Based on DNA Computing.
    Wang ZC; Liang K; Bao XG; Wu TH
    IEEE Trans Nanobioscience; 2024 Apr; 23(2):220-232. PubMed ID: 37607150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation.
    Wang Z; Huang D; Meng H; Tang C
    Biosystems; 2013 Oct; 114(1):1-7. PubMed ID: 23871964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallelizing Assignment Problem with DNA Strands.
    Khorsand B; Savadi A; Naghibzadeh M
    Iran J Biotechnol; 2020 Jan; 18(1):e2547. PubMed ID: 32884959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is optimal solution of every NP-complete or NP-hard problem determined from its characteristic for DNA-based computing.
    Guo M; Chang WL; Ho M; Lu J; Cao J
    Biosystems; 2005 Apr; 80(1):71-82. PubMed ID: 15740836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing.
    Wang Z; Pu J; Cao L; Tan J
    Int J Mol Sci; 2015 Oct; 16(10):25338-52. PubMed ID: 26512650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general resolution of intractable problems in polynomial time through DNA Computing.
    Sanches CA; Soma NY
    Biosystems; 2016 Dec; 150():119-131. PubMed ID: 27693626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro Identification of the Hamiltonian Cycle Using a Circular Structure Assisted DNA Computer.
    Sharma D; Ramteke M
    ACS Comb Sci; 2020 May; 22(5):225-231. PubMed ID: 32212630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular solutions to the binary integer programming problem based on DNA computation.
    Yeh CW; Chu CP; Wu KR
    Biosystems; 2006 Jan; 83(1):56-66. PubMed ID: 16229936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solving the 0/1 knapsack problem by a biomolecular DNA computer.
    Taghipour H; Rezaei M; Esmaili HA
    Adv Bioinformatics; 2013; 2013():341419. PubMed ID: 23509451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solving the set cover problem and the problem of exact cover by 3-sets in the Adleman-Lipton model.
    Chang WL; Guo M
    Biosystems; 2003 Dec; 72(3):263-75. PubMed ID: 14643494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving satisfiability problems using a novel microarray-based DNA computer.
    Lin CH; Cheng HP; Yang CB; Yang CN
    Biosystems; 2007; 90(1):242-52. PubMed ID: 17029765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameterized runtime analyses of evolutionary algorithms for the planar euclidean traveling salesperson problem.
    Sutton AM; Neumann F; Nallaperuma S
    Evol Comput; 2014; 22(4):595-628. PubMed ID: 24479542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-based computing of strategic assignment problems.
    Shu JJ; Wang QW; Yong KY
    Phys Rev Lett; 2011 May; 106(18):188702. PubMed ID: 21635133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.