BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34460568)

  • 1. Boron-Based Neutron Scintillator Screens for Neutron Imaging.
    Chuirazzi W; Craft A; Schillinger B; Cool S; Tengattini A
    J Imaging; 2020 Nov; 6(11):. PubMed ID: 34460568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring Thickness-Dependent Relative Light Yield and Detection Efficiency of Scintillator Screens.
    Chuirazzi WC; Craft AE
    J Imaging; 2020 Jun; 6(7):. PubMed ID: 34460649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light Yield Enhancement of 157-Gadolinium Oxysulfide Scintillator Screens for the High-Resolution Neutron Imaging.
    Crha J; Vila-Comamala J; Lehmann E; David C; Trtik P
    MethodsX; 2019; 6():107-114. PubMed ID: 30656142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutron imaging detector with 2 μm spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators.
    Hussey DS; LaManna JM; Baltic E; Jacobson DL
    Nucl Instrum Methods Phys Res A; 2017 Sep; 866():. PubMed ID: 34857978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel high-efficiency 2D position-sensitive ZnS:Ag/
    Mauri G; Sykora GJ; Schooneveld EM; Capelli SC; Gutmann MJ; Howarth S; Mann SE; Zuddas F; Rhodes NJ
    J Appl Crystallogr; 2024 Jun; 57(Pt 3):690-699. PubMed ID: 38846768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility study of optical imaging of the boron-dose distribution by a liquid scintillator in a clinical boron neutron capture therapy field.
    Maeda H; Nohtomi A; Hu N; Kakino R; Akita K; Ono K
    Med Phys; 2024 Jan; 51(1):509-521. PubMed ID: 37672219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Who made the noise? Systematic approach for the assessment of neutron imaging scintillators.
    Boillat P; Trtik P; Lehmann EH; Forss S; Kaestner A; Mannes D; Morgano M; Walfort B; Strobl M
    Opt Express; 2024 Apr; 32(8):14471-14489. PubMed ID: 38859391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First optical observation of
    Nohtomi A; Maeda H; Sakamoto N; Wakabayashi G; Takata T; Sakurai Y
    Radiol Phys Technol; 2022 Mar; 15(1):37-44. PubMed ID: 34841495
    [No Abstract]   [Full Text] [Related]  

  • 9. Fast Neutron Imaging with Semiconductor Nanocrystal Scintillators.
    McCall KM; Sakhatskyi K; Lehmann E; Walfort B; Losko AS; Montanarella F; Bodnarchuk MI; Krieg F; Kelestemur Y; Mannes D; Shynkarenko Y; Yakunin S; Kovalenko MV
    ACS Nano; 2020 Nov; 14(11):14686-14697. PubMed ID: 32897688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scintillator screen development for fast neutron radiography and tomography and its application at the beamline of the 10 MW BNC research reactor.
    Zboray R; Adams R; Kis Z
    Appl Radiat Isot; 2018 Oct; 140():215-223. PubMed ID: 30055506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New perspectives for neutron imaging through advanced event-mode data acquisition.
    Losko AS; Han Y; Schillinger B; Tartaglione A; Morgano M; Strobl M; Long J; Tremsin AS; Schulz M
    Sci Rep; 2021 Nov; 11(1):21360. PubMed ID: 34725403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scintillator-based Timepix3 detector for neutron spin-echo techniques using intensity modulation.
    Funama F; Chong SA; Loyd M; Gofron KJ; Zhang Y; Kuhn SJ; Zhang C; Fitzsimmons MR; Khaplanov A; Vacaliuc B; Crow L; Li F
    Rev Sci Instrum; 2024 Mar; 95(3):. PubMed ID: 38501936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prompt gamma ray detection and imaging for boron neutron capture therapy using CdTe detector and novel detector shield - Monte Carlo study.
    Moktan H; Lee CL; Cho SH
    Med Phys; 2023 Mar; 50(3):1736-1745. PubMed ID: 36625477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging.
    Larsson JC; Lundström U; Hertz HM
    Med Phys; 2016 Jun; 43(6):2731-2740. PubMed ID: 27277020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of real-time thermal neutron monitor using boron-loaded plastic scintillator with optical fiber for boron neutron capture therapy.
    Ishikawa M; Ono K; Sakurai Y; Unesaki H; Uritani A; Bengua G; Kobayashi T; Tanaka K; Kosako T
    Appl Radiat Isot; 2004 Nov; 61(5):775-9. PubMed ID: 15308143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of a position-sensitive scintillator neutron detector prototype based on
    Tang M; Yu Q; Huang C; Tang B; Sun Z; Zhao W; Wei G; Cai X; Yue X; Zhou S
    Rev Sci Instrum; 2022 Mar; 93(3):033305. PubMed ID: 35365010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of several Li doped scintillators for measurement of neutron and γ radiation integral quantities.
    Tichý M; Huml O
    Appl Radiat Isot; 2022 Jun; 184():110193. PubMed ID: 35313267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microdome-gooved Gd(2)O(2)S:Tb scintillator for flexible and high resolution digital radiography.
    Jung PG; Lee CH; Bae KM; Lee JM; Lee SM; Lim CH; Yun S; Kim HK; Ko JS
    Opt Express; 2010 Jul; 18(14):14850-8. PubMed ID: 20639972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Note: Development of real-time epithermal neutron detector for boron neutron capture therapy.
    Tanaka H; Sakurai Y; Takata T; Watanabe T; Kawabata S; Suzuki M; Masunaga SI; Taki K; Akabori K; Watanabe K; Ono K
    Rev Sci Instrum; 2017 May; 88(5):056101. PubMed ID: 28571445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transparent Microcomposite Films Based on a Ce-Doped Li
    Zhou X; Wang CL; Wang Y
    ACS Omega; 2022 Sep; 7(35):31567-31576. PubMed ID: 36092621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.