BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34460668)

  • 1. Measurement of Vibrating Tympanic Membrane in an In Vivo Mouse Model Using Doppler Optical Coherence Tomography.
    Jeon D; Kim JK; Jeon M; Kim J
    J Imaging; 2019 Sep; 5(9):. PubMed ID: 34460668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Vibration Measurement of Middle Ear Structure Using Doppler Optical Coherence Tomography: Preliminary Study.
    Jeon D; Cho NH; Park K; Kim K; Jeon M; Jang JH; Kim J
    Clin Exp Otorhinolaryngol; 2019 Feb; 12(1):40-49. PubMed ID: 30045616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography.
    Burkhardt A; Kirsten L; Bornitz M; Zahnert T; Koch E
    J Biophotonics; 2014 Jun; 7(6):434-41. PubMed ID: 23225692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endoscopic optical coherence tomography with wide field-of-view for the morphological and functional assessment of the human tympanic membrane.
    Kirsten L; Schindler M; Morgenstern J; Erkkilä MT; Golde J; Walther J; Rottmann P; Kemper M; Bornitz M; Neudert M; Zahnert T; Koch E
    J Biomed Opt; 2018 Dec; 24(3):1-11. PubMed ID: 30516037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Characterization of Micro-Vibration in Natural Latex Membrane Resembling Tympanic Membrane Functionally Using Optical Doppler Tomography.
    Seong D; Kwon J; Jeon D; Wijesinghe RE; Lee J; Ravichandran NK; Han S; Lee J; Kim P; Jeon M; Kim J
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and modeling study of human tympanic membrane motion in the presence of middle ear liquid.
    Zhang X; Guan X; Nakmali D; Palan V; Pineda M; Gan RZ
    J Assoc Res Otolaryngol; 2014 Dec; 15(6):867-81. PubMed ID: 25106467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography.
    Hubler Z; Shemonski ND; Shelton RL; Monroy GL; Nolan RM; Boppart SA
    Quant Imaging Med Surg; 2015 Feb; 5(1):69-77. PubMed ID: 25694956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography.
    Applegate BE; Shelton RL; Gao SS; Oghalai JS
    Opt Lett; 2011 Dec; 36(23):4716-8. PubMed ID: 22139294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional assessment of moisture influenced cadaveric tympanic membrane using phase shift-resolved optical Doppler vibrography.
    Jeon B; Lee J; Jeon D; Kim P; Jang JH; Wijesinghe RE; Jeon M; Kim J
    J Biophotonics; 2020 Feb; 13(2):e201900202. PubMed ID: 31670908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential multipoint motion of the tympanic membrane measured by laser Doppler vibrometry: preliminary results for normal tympanic membrane.
    Kunimoto Y; Hasegawa K; Arii S; Kataoka H; Yazama H; Kuya J; Kitano H
    Otol Neurotol; 2014 Apr; 35(4):719-24. PubMed ID: 24317215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical assessment of the in vivo tympanic membrane status using a handheld optical coherence tomography-based otoscope.
    Park K; Cho NH; Jeon M; Lee SH; Jang JH; Boppart SA; Jung W; Kim J
    Acta Otolaryngol; 2018 Apr; 138(4):367-374. PubMed ID: 29125012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery from tympanic membrane perforation: Effects on membrane thickness, auditory thresholds, and middle ear transmission.
    Cai L; Stomackin G; Perez NM; Lin X; Jung TT; Dong W
    Hear Res; 2019 Dec; 384():107813. PubMed ID: 31655347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review.
    Tan HEI; Santa Maria PL; Wijesinghe P; Francis Kennedy B; Allardyce BJ; Eikelboom RH; Atlas MD; Dilley RJ
    Otolaryngol Head Neck Surg; 2018 Sep; 159(3):424-438. PubMed ID: 29787354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study.
    Pitris C; Saunders KT; Fujimoto JG; Brezinski ME
    Arch Otolaryngol Head Neck Surg; 2001 Jun; 127(6):637-42. PubMed ID: 11405861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method to measure sound transmission via the malleus-incus complex.
    Dobrev I; Ihrle S; Röösli C; Gerig R; Eiber A; Huber AM; Sim JH
    Hear Res; 2016 Oct; 340():89-98. PubMed ID: 26626362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the phase and amplitude of ossicular chain motion using sound-synchronous optical coherence vibrography.
    Ramier A; Cheng JT; Ravicz ME; Rosowski JJ; Yun SH
    Biomed Opt Express; 2018 Nov; 9(11):5489-5502. PubMed ID: 30460142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Multispectral Imaging in the Human Tympanic Membrane.
    Tran Van T; Lu Thi Thao M; Bui Mai Quynh L; Phan Ngoc Khuong C; Huynh Quang L
    J Healthc Eng; 2020; 2020():6219845. PubMed ID: 33014321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interferometric measurement of the amplitude and phase of tympanic membrane vibrations in cat.
    Decraemer WF; Khanna SM; Funnell WR
    Hear Res; 1989 Mar; 38(1-2):1-17. PubMed ID: 2708151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser--Doppler velocity meter applied to tympanic membrane vibrations in cat.
    Buunen TJ; Vlaming MS
    J Acoust Soc Am; 1981 Mar; 69(3):744-50. PubMed ID: 7240554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of chronic tympanic membrane perforation using 3D collagen with topical umbilical cord serum.
    Jang CH; Cho YB; Yeo M; Lee H; Min EJ; Lee BH; Kim GH
    Int J Biol Macromol; 2013 Nov; 62():232-40. PubMed ID: 24016669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.