BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34460668)

  • 21. Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results.
    Razavi P; Ravicz ME; Dobrev I; Cheng JT; Furlong C; Rosowski JJ
    Hear Res; 2016 Oct; 340():15-24. PubMed ID: 26880098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imaging the human tympanic membrane using optical coherence tomography in vivo.
    Djalilian HR; Ridgway J; Tam M; Sepehr A; Chen Z; Wong BJ
    Otol Neurotol; 2008 Dec; 29(8):1091-4. PubMed ID: 18957904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Optimal Partial Ossicular Prosthesis Should Connect Both to the Tympanic Membrane and Malleus: A Temporal Bone Study Using Laser Doppler Vibrometry.
    Niklasson A; Gladiné K; Rönnblom A; von Unge M; Dirckx J; Tano K
    Otol Neurotol; 2018 Mar; 39(3):333-339. PubMed ID: 29342039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extratympanic Observation of Middle and Inner Ear Structures in Rodents Using Optical Coherence Tomography.
    Oh SJ; Lee IW; Wang SG; Kong SK; Kim HK; Goh EK
    Clin Exp Otorhinolaryngol; 2020 May; 13(2):106-112. PubMed ID: 31668054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesenchymal stem cell-laden hybrid scaffold for regenerating subacute tympanic membrane perforation.
    Jang CH; Ahn S; Lee JW; Lee BH; Lee H; Kim G
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():456-463. PubMed ID: 28024609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Imaging Modalities in Otology.
    Bance M; Zarowski A; Adamson RA; Casselman JW
    Adv Otorhinolaryngol; 2018; 81():1-13. PubMed ID: 29794443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Finite-Element Modelling Based on Optical Coherence Tomography and Corresponding X-ray MicroCT Data for Three Human Middle Ears.
    Golabbakhsh M; Wang X; MacDougall D; Farrell J; Landry T; Funnell WRJ; Adamson R
    J Assoc Res Otolaryngol; 2023 Jun; 24(3):339-363. PubMed ID: 37165211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Influence of liquid volume in the middle ear on tympanic membrane vibration (experimental study by holographic interferometry)].
    Okano K
    Nihon Jibiinkoka Gakkai Kaiho; 1990 Nov; 93(11):1847-55. PubMed ID: 2280306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pars tensa and tympanicomalleal joint: proposal for a new anatomic classification.
    Gilberto N; Santos R; Sousa P; O'Neill A; Escada P; Pais D
    Eur Arch Otorhinolaryngol; 2019 Aug; 276(8):2141-2148. PubMed ID: 31004197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wavelength-specific optoacoustic-induced vibrations of the guinea pig tympanic membrane.
    Heimann L; Carlein C; Sorg K; Diller R; Langenbucher A; Schick B; Wenzel GI
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33675190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Laser Doppler vibrometry of the tympanic membrane. Possibilities for objective middle ear diagnosis].
    Stasche N; Foth HJ; Hörmann K
    HNO; 1993 Jan; 41(1):1-6. PubMed ID: 8449781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Middle ear transmission disorders--tympanic membrane vibration analysis by laser-Doppler-vibrometry.
    Stasche N; Foth HJ; Hörmann K; Baker A; Huthoff C
    Acta Otolaryngol; 1994 Jan; 114(1):59-63. PubMed ID: 8128855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-range, wide-field swept-source optical coherence tomography with GPU accelerated digital lock-in Doppler vibrography for real-time,
    MacDougall D; Farrell J; Brown J; Bance M; Adamson R
    Biomed Opt Express; 2016 Nov; 7(11):4621-4635. PubMed ID: 27896001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of increased inner ear pressure on middle ear mechanics.
    Murakami S; Gyo K; Goode RL
    Otolaryngol Head Neck Surg; 1998 May; 118(5):703-8. PubMed ID: 9591878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure.
    Jiang S; Smith K; Gan RZ
    Hear Res; 2019 Jul; 378():43-52. PubMed ID: 30630647
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetically driven middle ear ossicles for optical measurement of vibrations in an ear with opened tympanic membrane.
    Peacock J; von Unge M; Dirckx J
    Rev Sci Instrum; 2013 Dec; 84(12):121707. PubMed ID: 24387412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of changes in mass on middle ear function.
    Nishihara S; Aritomo H; Goode RL
    Otolaryngol Head Neck Surg; 1993 Nov; 109(5):899-910. PubMed ID: 8247572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Dynamic behavior of guinea pig middle ear].
    Suzaki Y; Wada H; Ohyama K; Kobayasi T; Houzawa K; Takasaka T
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Mar; 100(3):342-50. PubMed ID: 9103847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Vibrations of the human tympanic membrane measured with Laser Doppler Vibrometer].
    Szymański M; Rusinek R; Zadrozniak M; Warmiński J; Morshed K
    Otolaryngol Pol; 2009; 63(2):182-5. PubMed ID: 19681493
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Mosaicking Approach for In Vivo Thickness Mapping of the Human Tympanic Membrane Using Low Coherence Interferometry.
    Pande P; Shelton RL; Monroy GL; Nolan RM; Boppart SA
    J Assoc Res Otolaryngol; 2016 Oct; 17(5):403-16. PubMed ID: 27456022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.