These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34460668)

  • 41. Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media.
    Monroy GL; Shelton RL; Nolan RM; Nguyen CT; Novak MA; Hill MC; McCormick DT; Boppart SA
    Laryngoscope; 2015 Aug; 125(8):E276-82. PubMed ID: 25599652
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ossiculoplasty in missing malleus and stapes patients: experimental and preliminary clinical results with a new malleus replacement prosthesis with the otology-neurotology database.
    Vincent R; Bittermann AJ; Wenzel G; Oates J; Sperling N; Lenarz T; Grolman W
    Otol Neurotol; 2013 Jan; 34(1):83-90. PubMed ID: 23151778
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optical coherence tomography for the diagnosis and evaluation of human otitis media.
    Cho NH; Lee SH; Jung W; Jang JH; Kim J
    J Korean Med Sci; 2015 Mar; 30(3):328-35. PubMed ID: 25729258
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microanatomy of the tympanic membrane in chronic myringitis obtained with optical coherence tomography.
    Guder E; Lankenau E; Fleischhauer F; Schulz-Hildebrandt H; Hüttmann G; Pau HW; Just T
    Eur Arch Otorhinolaryngol; 2015 Nov; 272(11):3217-23. PubMed ID: 25384576
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP
    Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Miniature, minimally invasive, tunable endoscope for investigation of the middle ear.
    Pawlowski ME; Shrestha S; Park J; Applegate BE; Oghalai JS; Tkaczyk TS
    Biomed Opt Express; 2015 Jun; 6(6):2246-57. PubMed ID: 26114043
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Real-time phase-resolved optical coherence tomography and optical Doppler tomography.
    Ding Z; Zhao Y; Ren H; Nelson J; Chen Z
    Opt Express; 2002 Mar; 10(5):236-45. PubMed ID: 19436351
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optical coherence tomography: current and future clinical applications in otology.
    Matthews TJ; Adamson R
    Curr Opin Otolaryngol Head Neck Surg; 2020 Oct; 28(5):296-301. PubMed ID: 32833887
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Middle-ear mechanics of Type III tympanoplasty (stapes columella): I. Experimental studies.
    Mehta RP; Ravicz ME; Rosowski JJ; Merchant SN
    Otol Neurotol; 2003 Mar; 24(2):176-85. PubMed ID: 12621329
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Effect of Ear Canal Orientation on Tympanic Membrane Motion and the Sound Field Near the Tympanic Membrane.
    Cheng JT; Ravicz M; Guignard J; Furlong C; Rosowski JJ
    J Assoc Res Otolaryngol; 2015 Aug; 16(4):413-32. PubMed ID: 25910607
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vivo functional imaging of the human middle ear with a hand-held optical coherence tomography device.
    Lui CG; Kim W; Dewey JB; Macías-Escrivá FD; Ratnayake K; Oghalai JS; Applegate BE
    Biomed Opt Express; 2021 Aug; 12(8):5196-5213. PubMed ID: 34513251
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Non-contact optical coherence tomography - an effective method for visualizing the exudate of the middle ear].
    Novozhilov AA; Shilyagin PA; Abubakirov TE; DilenYan AL; Klimycheva MB; Gelikonov GV; Ksenofontov SY; Gelikonov VM; Shakhov AV
    Vestn Otorinolaringol; 2020; 85(4):16-23. PubMed ID: 32885631
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.
    Lee HY; Raphael PD; Park J; Ellerbee AK; Applegate BE; Oghalai JS
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3128-33. PubMed ID: 25737536
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts.
    Kozin ED; Black NL; Cheng JT; Cotler MJ; McKenna MJ; Lee DJ; Lewis JA; Rosowski JJ; Remenschneider AK
    Hear Res; 2016 Oct; 340():191-203. PubMed ID: 26994661
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Dresden in vivo OCT dataset for automatic middle ear segmentation.
    Liu P; Steuer S; Golde J; Morgenstern J; Hu Y; Schieffer C; Ossmann S; Kirsten L; Bodenstedt S; Pfeiffer M; Speidel S; Koch E; Neudert M
    Sci Data; 2024 Feb; 11(1):242. PubMed ID: 38409278
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical Energy Dissipation Through the Ossicular Chain and Inner Ear Using Laser Doppler Vibrometer Measurement of Round Window Velocity.
    Ryan M; Lally J; Adams JK; Higgins S; Ahmed M; Aden J; Esquivel C; Spear SA
    Otol Neurotol; 2020 Mar; 41(3):e387-e391. PubMed ID: 31821262
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessing the Effect of Middle Ear Effusions on Wideband Acoustic Immittance Using Optical Coherence Tomography.
    Won J; Monroy GL; Huang PC; Hill MC; Novak MA; Porter RG; Spillman DR; Chaney EJ; Barkalifa R; Boppart SA
    Ear Hear; 2020; 41(4):811-824. PubMed ID: 31634213
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A normative study of tympanic membrane motion in humans using a laser Doppler vibrometer (LDV).
    Whittemore KR; Merchant SN; Poon BB; Rosowski JJ
    Hear Res; 2004 Jan; 187(1-2):85-104. PubMed ID: 14698090
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sound-power collection by the auditory periphery of the mongolian gerbil Meriones unguiculatus. II. External-ear radiation impedance and power collection.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1996 May; 99(5):3044-63. PubMed ID: 8642116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.