These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 34461147)
1. Study of the bioenergetics to identify the novel pathways as a drug target against Mycobacterium tuberculosis using Petri net. Gupta S; Fatima Z; Kumawat S Biosystems; 2021 Nov; 209():104509. PubMed ID: 34461147 [TBL] [Abstract][Full Text] [Related]
2. Quantitative analysis of the bioenergetics of Mycobacterium tuberculosis along with Glyoxylate cycle as a drug target under inhibition of enzymes using Petri net. Gupta S; Kumawat S; Fatima Z; Priya ; Chatterjee S Comput Biol Chem; 2023 Jun; 104():107828. PubMed ID: 36893566 [TBL] [Abstract][Full Text] [Related]
3. Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. Cook GM; Hards K; Dunn E; Heikal A; Nakatani Y; Greening C; Crick DC; Fontes FL; Pethe K; Hasenoehrl E; Berney M Microbiol Spectr; 2017 Jun; 5(3):. PubMed ID: 28597820 [TBL] [Abstract][Full Text] [Related]
4. Isoniazid Bactericidal Activity Involves Electron Transport Chain Perturbation. Zeng S; Soetaert K; Ravon F; Vandeput M; Bald D; Kauffmann JM; Mathys V; Wattiez R; Fontaine V Antimicrob Agents Chemother; 2019 Mar; 63(3):. PubMed ID: 30642937 [TBL] [Abstract][Full Text] [Related]
5. Targeting Energy Metabolism in Bald D; Villellas C; Lu P; Koul A mBio; 2017 Apr; 8(2):. PubMed ID: 28400527 [TBL] [Abstract][Full Text] [Related]
6. Priming the tuberculosis drug pipeline: new antimycobacterial targets and agents. Evans JC; Mizrahi V Curr Opin Microbiol; 2018 Oct; 45():39-46. PubMed ID: 29482115 [TBL] [Abstract][Full Text] [Related]
7. Targeting bacterial energetics to produce new antimicrobials. Hards K; Cook GM Drug Resist Updat; 2018 Jan; 36():1-12. PubMed ID: 29499834 [TBL] [Abstract][Full Text] [Related]
8. 2-aminoimidazoles collapse mycobacterial proton motive force and block the electron transport chain. Jeon AB; Ackart DF; Li W; Jackson M; Melander RJ; Melander C; Abramovitch RB; Chicco AJ; Basaraba RJ; Obregón-Henao A Sci Rep; 2019 Feb; 9(1):1513. PubMed ID: 30728417 [TBL] [Abstract][Full Text] [Related]
9. Combining cheminformatics methods and pathway analysis to identify molecules with whole-cell activity against Mycobacterium tuberculosis. Sarker M; Talcott C; Madrid P; Chopra S; Bunin BA; Lamichhane G; Freundlich JS; Ekins S Pharm Res; 2012 Aug; 29(8):2115-27. PubMed ID: 22477069 [TBL] [Abstract][Full Text] [Related]
10. Respiratory flexibility in response to inhibition of cytochrome C oxidase in Mycobacterium tuberculosis. Arora K; Ochoa-Montaño B; Tsang PS; Blundell TL; Dawes SS; Mizrahi V; Bayliss T; Mackenzie CJ; Cleghorn LA; Ray PC; Wyatt PG; Uh E; Lee J; Barry CE; Boshoff HI Antimicrob Agents Chemother; 2014 Nov; 58(11):6962-5. PubMed ID: 25155596 [TBL] [Abstract][Full Text] [Related]
11. The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd. Lu P; Asseri AH; Kremer M; Maaskant J; Ummels R; Lill H; Bald D Sci Rep; 2018 Feb; 8(1):2625. PubMed ID: 29422632 [TBL] [Abstract][Full Text] [Related]
12. Neoteric advancement in TB drugs and an overview on the anti-tubercular role of peptides through computational approaches. Khusro A; Aarti C; Barbabosa-Pliego A; Salem AZM Microb Pathog; 2018 Jan; 114():80-89. PubMed ID: 29174699 [TBL] [Abstract][Full Text] [Related]
13. Combinations of Respiratory Chain Inhibitors Have Enhanced Bactericidal Activity against Mycobacterium tuberculosis. Berube BJ; Parish T Antimicrob Agents Chemother; 2018 Jan; 62(1):. PubMed ID: 29061760 [TBL] [Abstract][Full Text] [Related]
15. Modeling Host-Pathogen Interaction to Elucidate the Metabolic Drug Response of Intracellular Rienksma RA; Schaap PJ; Martins Dos Santos VAP; Suarez-Diez M Front Cell Infect Microbiol; 2019; 9():144. PubMed ID: 31139575 [TBL] [Abstract][Full Text] [Related]
16. Novel MenA Inhibitors Are Bactericidal against Berube BJ; Russell D; Castro L; Choi SR; Narayanasamy P; Parish T Antimicrob Agents Chemother; 2019 Jun; 63(6):. PubMed ID: 30962346 [No Abstract] [Full Text] [Related]
17. Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Lamprecht DA; Finin PM; Rahman MA; Cumming BM; Russell SL; Jonnala SR; Adamson JH; Steyn AJ Nat Commun; 2016 Aug; 7():12393. PubMed ID: 27506290 [TBL] [Abstract][Full Text] [Related]
18. Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis. Mackenzie JS; Lamprecht DA; Asmal R; Adamson JH; Borah K; Beste DJV; Lee BS; Pethe K; Rousseau S; Krieger I; Sacchettini JC; Glasgow JN; Steyn AJC Nat Commun; 2020 Nov; 11(1):6092. PubMed ID: 33257709 [TBL] [Abstract][Full Text] [Related]
19. Structural proteomics and computational analysis of a deadly pathogen: combating Mycobacterium tuberculosis from multiple fronts. Strong M; Goulding CW Methods Biochem Anal; 2006; 49():245-69. PubMed ID: 16929683 [No Abstract] [Full Text] [Related]
20. Advances in Computational Studies of Potential Drug Targets in Mycobacterium tuberculosis. Alladi SM Curr Top Med Chem; 2018; 18(13):1062-1074. PubMed ID: 30084331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]