These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34461202)

  • 1. Harnessing model organism genomics to underpin the machine learning-based prediction of essential genes in eukaryotes - Biotechnological implications.
    Campos TL; Korhonen PK; Hofmann A; Gasser RB; Young ND
    Biotechnol Adv; 2022; 54():107822. PubMed ID: 34461202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inference of Essential Genes of the Parasite
    Campos TL; Korhonen PK; Young ND; Wang T; Song J; Marhoefer R; Chang BCH; Selzer PM; Gasser RB
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-Predicting Essential Genes between Two Model Eukaryotic Species Using Machine Learning.
    Campos TL; Korhonen PK; Young ND
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm.
    Ma G; Wang T; Korhonen PK; Hofmann A; Sternberg PW; Young ND; Gasser RB
    Adv Parasitol; 2020; 108():175-229. PubMed ID: 32291085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 'Bingo'-a large language model- and graph neural network-based workflow for the prediction of essential genes from protein data.
    Ma J; Song J; Young ND; Chang BCH; Korhonen PK; Campos TL; Liu H; Gasser RB
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38152979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential gene prediction using limited gene essentiality information-An integrative semi-supervised machine learning strategy.
    Nandi S; Ganguli P; Sarkar RR
    PLoS One; 2020; 15(11):e0242943. PubMed ID: 33253254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined use of feature engineering and machine-learning to predict essential genes in
    Campos TL; Korhonen PK; Hofmann A; Gasser RB; Young ND
    NAR Genom Bioinform; 2020 Sep; 2(3):lqaa051. PubMed ID: 33575603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting gene essentiality in
    Campos TL; Korhonen PK; Sternberg PW; Gasser RB; Young ND
    Comput Struct Biotechnol J; 2020; 18():1093-1102. PubMed ID: 32489524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heuristic-enabled active machine learning: A case study of predicting essential developmental stage and immune response genes in Drosophila melanogaster.
    Aromolaran OT; Isewon I; Adedeji E; Oswald M; Adebiyi E; Koenig R; Oyelade J
    PLoS One; 2023; 18(8):e0288023. PubMed ID: 37556452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomics of reproduction in parasitic nematodes-fundamental and biotechnological implications.
    Boag PR; Gasser RB; Nisbet AJ; Newton SE
    Biotechnol Adv; 2003 Apr; 21(2):103-8. PubMed ID: 14499132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene function prediction in five model eukaryotes exclusively based on gene relative location through machine learning.
    Pazos Obregón F; Silvera D; Soto P; Yankilevich P; Guerberoff G; Cantera R
    Sci Rep; 2022 Jul; 12(1):11655. PubMed ID: 35803984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene Essentiality Analyzed by
    Segal ES; Gritsenko V; Levitan A; Yadav B; Dror N; Steenwyk JL; Silberberg Y; Mielich K; Rokas A; Gow NAR; Kunze R; Sharan R; Berman J
    mBio; 2018 Oct; 9(5):. PubMed ID: 30377286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-organism genomics in veterinary parasite drug-discovery.
    Gilleard JS; Woods DJ; Dow JA
    Trends Parasitol; 2005 Jul; 21(7):302-5. PubMed ID: 15923143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correspondence of D. melanogaster and C. elegans developmental stages revealed by alternative splicing characteristics of conserved exons.
    Gao R; Li JJ
    BMC Genomics; 2017 Mar; 18(1):234. PubMed ID: 28302059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.
    Park CY; Wong AK; Greene CS; Rowland J; Guan Y; Bongo LA; Burdine RD; Troyanskaya OG
    PLoS Comput Biol; 2013; 9(3):e1002957. PubMed ID: 23516347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional genomics of ionotropic acetylcholine receptors in Caenorhabditis elegans and Drosophila melanogaster.
    Sattelle DB; Culetto E; Grauso M; Raymond V; Franks CJ; Towers P
    Novartis Found Symp; 2002; 245():240-57; discussion 257-60, 261-4. PubMed ID: 12027012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DBPMod: a supervised learning model for computational recognition of DNA-binding proteins in model organisms.
    Pradhan UK; Meher PK; Naha S; Sharma NK; Agarwal A; Gupta A; Parsad R
    Brief Funct Genomics; 2024 Jul; 23(4):363-372. PubMed ID: 37651627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. modMine: flexible access to modENCODE data.
    Contrino S; Smith RN; Butano D; Carr A; Hu F; Lyne R; Rutherford K; Kalderimis A; Sullivan J; Carbon S; Kephart ET; Lloyd P; Stinson EO; Washington NL; Perry MD; Ruzanov P; Zha Z; Lewis SE; Stein LD; Micklem G
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D1082-8. PubMed ID: 22080565
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.