These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34461211)

  • 21. Response to letter to the editor from Dr Rahman Shiri: The challenging topic of suicide across occupational groups.
    Niedhammer I; Milner A; Witt K; Klingelschmidt J; Khireddine-Medouni I; Alexopoulos EC; Toivanen S; Chastang JF; LaMontagne AD
    Scand J Work Environ Health; 2018 Jan; 44(1):108-110. PubMed ID: 29218357
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Narrative Review of Methods for Causal Inference and Associated Educational Resources.
    Landsittel D; Srivastava A; Kropf K
    Qual Manag Health Care; 2020; 29(4):260-269. PubMed ID: 32991545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The C-Word: Scientific Euphemisms Do Not Improve Causal Inference From Observational Data.
    Hernán MA
    Am J Public Health; 2018 May; 108(5):616-619. PubMed ID: 29565659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interpreting epidemiological evidence: how meta-analysis and causal inference methods are related.
    Weed DL
    Int J Epidemiol; 2000 Jun; 29(3):387-90. PubMed ID: 10869307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating the current state of Mendelian randomization studies: a protocol for a systematic review on methodological and clinical aspects using neurodegenerative disorders as outcome.
    Grover S; Del Greco M F; König IR
    Syst Rev; 2018 Sep; 7(1):145. PubMed ID: 30249280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives.
    Brookes ST; Whitley E; Peters TJ; Mulheran PA; Egger M; Davey Smith G
    Health Technol Assess; 2001; 5(33):1-56. PubMed ID: 11701102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Instrumental variable methods for causal inference.
    Baiocchi M; Cheng J; Small DS
    Stat Med; 2014 Jun; 33(13):2297-340. PubMed ID: 24599889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Causal inference from observational data.
    Listl S; Jürges H; Watt RG
    Community Dent Oral Epidemiol; 2016 Oct; 44(5):409-15. PubMed ID: 27111146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Do pooled estimates from meta-analyses of observational epidemiology studies contribute to causal inference?
    Savitz DA; Forastiere F
    Occup Environ Med; 2021 Sep; 78(9):621-622. PubMed ID: 34158356
    [No Abstract]   [Full Text] [Related]  

  • 30. Are interventions in reproductive medicine assessed for plausible and clinically relevant effects? A systematic review of power and precision in trials and meta-analyses.
    Stocking K; Wilkinson J; Lensen S; Brison DR; Roberts SA; Vail A
    Hum Reprod; 2019 Apr; 34(4):659-665. PubMed ID: 30838395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing the strength of evidence for a causal effect of respiratory syncytial virus lower respiratory tract infections on subsequent wheezing illness: a systematic review and meta-analysis.
    Brunwasser SM; Snyder BM; Driscoll AJ; Fell DB; Savitz DA; Feikin DR; Skidmore B; Bhat N; Bont LJ; Dupont WD; Wu P; Gebretsadik T; Holt PG; Zar HJ; Ortiz JR; Hartert TV
    Lancet Respir Med; 2020 Aug; 8(8):795-806. PubMed ID: 32763206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Causal analyses of existing databases: the importance of understanding what can be achieved with your data before analysis (commentary on Hernán).
    Morris TP; van Smeden M
    J Clin Epidemiol; 2022 Feb; 142():261-263. PubMed ID: 34560253
    [No Abstract]   [Full Text] [Related]  

  • 33. A systematic review of the reporting of sample size calculations and corresponding data components in observational functional magnetic resonance imaging studies.
    Guo Q; Thabane L; Hall G; McKinnon M; Goeree R; Pullenayegum E
    Neuroimage; 2014 Feb; 86():172-81. PubMed ID: 23954487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A survey of methodologies on causal inference methods in meta-analyses of randomized controlled trials.
    Markozannes G; Vourli G; Ntzani E
    Syst Rev; 2021 Jun; 10(1):170. PubMed ID: 34108033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Meta-analyses of adverse effects data derived from randomised controlled trials as compared to observational studies: methodological overview.
    Golder S; Loke YK; Bland M
    PLoS Med; 2011 May; 8(5):e1001026. PubMed ID: 21559325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overview of the epidemiology methods and applications: strengths and limitations of observational study designs.
    Colditz GA
    Crit Rev Food Sci Nutr; 2010; 50 Suppl 1(s1):10-2. PubMed ID: 21132580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
    Schuler MS; Rose S
    Am J Epidemiol; 2017 Jan; 185(1):65-73. PubMed ID: 27941068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selecting a Within- or Between-Subject Design for Mediation: Validity, Causality, and Statistical Power.
    Montoya AK
    Multivariate Behav Res; 2023; 58(3):616-636. PubMed ID: 35679239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Random Forests Approach for Causal Inference with Clustered Observational Data.
    Suk Y; Kang H; Kim JS
    Multivariate Behav Res; 2021; 56(6):829-852. PubMed ID: 32856937
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.