These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 34461399)
21. Laser Powder Bed Fusion of Ti-6Al-2Sn-4Zr-6Mo Alloy and Properties Prediction Using Deep Learning Approaches. Hassanin H; Zweiri Y; Finet L; Essa K; Qiu C; Attallah M Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921804 [TBL] [Abstract][Full Text] [Related]
22. A machine learning study on the fatigue crack path of short crack on an α titanium alloy. Shen Z; Lv G; Fu D; Long Y; Zhang Z; Tan K; Li L; Wang Q; Wang C Philos Trans A Math Phys Eng Sci; 2023 Nov; 381(2260):20220391. PubMed ID: 37742704 [TBL] [Abstract][Full Text] [Related]
23. Compression fatigue behavior of laser processed porous NiTi alloy. Bernard S; Krishna Balla V; Bose S; Bandyopadhyay A J Mech Behav Biomed Mater; 2012 Sep; 13():62-8. PubMed ID: 22842276 [TBL] [Abstract][Full Text] [Related]
24. Miniature CoCr laser welds under cyclic shear: Fatigue evolution and crack growth. Kanerva M; Besharat Z; Pärnänen T; Jokinen J; Honkanen M; Sarlin E; Göthelid M; Schlenzka D J Mech Behav Biomed Mater; 2019 Nov; 99():93-103. PubMed ID: 31349149 [TBL] [Abstract][Full Text] [Related]
25. Rapid Alloy Development of Extremely High-Alloyed Metals Using Powder Blends in Laser Powder Bed Fusion. Ewald S; Kies F; Hermsen S; Voshage M; Haase C; Schleifenbaum JH Materials (Basel); 2019 May; 12(10):. PubMed ID: 31130684 [TBL] [Abstract][Full Text] [Related]
26. Investigation on Fatigue Threshold Testing Methods in a Near Lamellar TiAl Alloy. Wang S; Li H; Bowen P Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31653069 [TBL] [Abstract][Full Text] [Related]
27. Additive Manufacturing of Ti-Based Intermetallic Alloys: A Review and Conceptualization of a Next-Generation Machine. Dzogbewu TC; du Preez WB Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361509 [TBL] [Abstract][Full Text] [Related]
28. FCG Modelling Considering the Combined Effects of Cyclic Plastic Deformation and Growth of Micro-Voids. Sérgio ER; Antunes FV; Borges MF; Neto DM Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361497 [TBL] [Abstract][Full Text] [Related]
29. Influence of Minor Alloying Element Additions on the Crack Susceptibility of a Nickel Based Superalloy Manufactured by LPBF. Vilanova M; Taboada MC; Martinez-Amesti A; Niklas A; San Sebastian M; Guraya T Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640097 [TBL] [Abstract][Full Text] [Related]
30. Fatigue Crack Growth of Electron Beam Melted Ti-6Al-4V in High-Pressure Hydrogen. Neikter M; Colliander M; de Andrade Schwerz C; Hansson T; Åkerfeldt P; Pederson R; Antti ML Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32178389 [TBL] [Abstract][Full Text] [Related]
31. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects. Robertson SW; Ritchie RO Biomaterials; 2007 Feb; 28(4):700-9. PubMed ID: 17034845 [TBL] [Abstract][Full Text] [Related]
32. Fracture Toughness and Fatigue Crack Growth Analyses on a Biomedical Ti-27Nb Alloy under Constant Amplitude Loading Using Extended Finite Element Modelling. Abdellah MY; Alharthi H Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374650 [TBL] [Abstract][Full Text] [Related]
33. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. Takaichi A; Suyalatu ; Nakamoto T; Joko N; Nomura N; Tsutsumi Y; Migita S; Doi H; Kurosu S; Chiba A; Wakabayashi N; Igarashi Y; Hanawa T J Mech Behav Biomed Mater; 2013 May; 21():67-76. PubMed ID: 23500549 [TBL] [Abstract][Full Text] [Related]
34. Cyclic Crack Growth in Chemically Tailored Isotropic Austenitic Steel Processed by Electron Beam Powder Bed Fusion. Droste M; Wagner R; Günther J; Burkhardt C; Henkel S; Niendorf T; Biermann H Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772069 [TBL] [Abstract][Full Text] [Related]
35. Laser Powder-Bed Fusion as an Alloy Development Tool: Parameter Selection for In-Situ Alloying Using Elemental Powders. Shoji Aota L; Bajaj P; Zschommler Sandim HR; Aimé Jägle E Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899864 [TBL] [Abstract][Full Text] [Related]
36. Fabrication, tribological and corrosion behaviors of ultra-fine grained Co-28Cr-6Mo alloy for biomedical applications. Ren F; Zhu W; Chu K J Mech Behav Biomed Mater; 2016 Jul; 60():139-147. PubMed ID: 26807770 [TBL] [Abstract][Full Text] [Related]
37. Near-threshold fatigue crack propagation without oxide-induced crack closure. Tazoe K; Tanaka H; Oka M; Yagawa G Sci Rep; 2020 May; 10(1):7926. PubMed ID: 32404923 [TBL] [Abstract][Full Text] [Related]
38. Optimization of Thermo-Mechanical Fatigue Life for Eutectic Al-Si Alloy by the Ultrasonic Melt Treatment. Wang M; Pang J; Liu X; Wang J; Liu Y; Li S; Zhang Z Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295191 [TBL] [Abstract][Full Text] [Related]
39. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys. Hiromoto S; Onodera E; Chiba A; Asami K; Hanawa T Biomaterials; 2005 Aug; 26(24):4912-23. PubMed ID: 15769525 [TBL] [Abstract][Full Text] [Related]
40. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions. Wang M; Du J; Deng Q Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]