These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 34461464)
1. Molecular design of high-efficacy and high drug safety Fluoroquinolones suitable for a variety of aerobic biodegradation bacteria. Li X; Hou Y; Li Q; Gu W; Li Y J Environ Manage; 2021 Dec; 299():113628. PubMed ID: 34461464 [TBL] [Abstract][Full Text] [Related]
2. Highly biodegradable fluoroquinolone derivatives designed using the 3D-QSAR model and biodegradation pathways analysis. Hou Y; Zhao Y; Li Q; Li Y Ecotoxicol Environ Saf; 2020 Mar; 191():110186. PubMed ID: 31954922 [TBL] [Abstract][Full Text] [Related]
3. Bio-Enhanced Degradation Strategies for Fluoroquinolones in the Sewage Sludge Composting Stage: Molecular Modification and Resistance Gene Regulation. Jin X; Zhao Y; Ren Z; Wang P; Li Y Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805422 [TBL] [Abstract][Full Text] [Related]
4. An adjusted 3D-QSAR model for the combined activity of fluoroquinolones photodegradation and microbial degradation assisted by dynamic simulation and its application in molecular modification. Zhang W; Gu W; Sun R; Zhou M; Han Z; Li Y Ecotoxicol Environ Saf; 2021 Apr; 212():111973. PubMed ID: 33516099 [TBL] [Abstract][Full Text] [Related]
5. Application of a 2D-QSAR with a sine normalization method for the biodegradation of fluoroquinolones to poison cyanobacteria. Li M; Du M; Sun R; Zhang W; Hou Y; Li Y Environ Sci Pollut Res Int; 2021 Mar; 28(9):11302-11316. PubMed ID: 33118068 [TBL] [Abstract][Full Text] [Related]
6. In silico degradation of fluoroquinolones by a microalgae-based constructed wetland system. Wu F; Du M; Ling J; Wang R; Hao N; Wang Z; Li X J Hazard Mater; 2024 Sep; 476():134946. PubMed ID: 38941832 [TBL] [Abstract][Full Text] [Related]
7. A 3D-QSAR model for the comprehensive bioenrichment and biodegradation effect of benzotriazole ultraviolet stabilisers and application of the model in molecular modification. Xue J; Chen X; Li Q; Sun R; Xiao J; Li Y Environ Sci Pollut Res Int; 2022 Feb; 29(10):14534-14551. PubMed ID: 34617219 [TBL] [Abstract][Full Text] [Related]
8. An insight into the removal of fluoroquinolones in activated sludge process: Sorption and biodegradation characteristics. Wang L; Qiang Z; Li Y; Ben W J Environ Sci (China); 2017 Jun; 56():263-271. PubMed ID: 28571863 [TBL] [Abstract][Full Text] [Related]
9. Efficient and synergistic degradation of fluoroquinolones by bacteria and microalgae: Design of environmentally friendly substitutes, risk regulation and mechanism analysis. Fu R; Li X; Zhao Y; Pu Q; Li Y; Gu W J Hazard Mater; 2022 Sep; 437():129384. PubMed ID: 35897172 [TBL] [Abstract][Full Text] [Related]
10. Strategies to Control Human Health Risks Arising from Antibiotics in the Environment: Molecular Modification of QNs for Enhanced Plant-Microbial Synergistic Degradation. Sun P; Zhao W Int J Environ Res Public Health; 2021 Oct; 18(20):. PubMed ID: 34682354 [TBL] [Abstract][Full Text] [Related]
11. Molecular Modification of Fluoroquinolone-Biodegrading Enzymes Based on Molecular Docking and Homology Modelling. Liu SC; Sun SJ; Cui P; Ding YF Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31540337 [TBL] [Abstract][Full Text] [Related]
12. Predicting mixture toxicity and antibiotic resistance of fluoroquinolones and their photodegradation products in Escherichia coli. Wang D; Ning Q; Dong J; Brooks BW; You J Environ Pollut; 2020 Jul; 262():114275. PubMed ID: 32142973 [TBL] [Abstract][Full Text] [Related]
13. Combined QSAR/QSPR and molecular docking study on fluoroquinolones to reduce biological enrichment. Zhao X; Zhao Y; Ren Z; Li Y Comput Biol Chem; 2019 Apr; 79():177-184. PubMed ID: 30836319 [TBL] [Abstract][Full Text] [Related]
14. Environmental Conversion Path Inference of New Designed Fluoroquinolones and Their Potential Environmental Risk. Zhang W; Sun R; Zhao X; Li Y Arch Environ Contam Toxicol; 2020 Feb; 78(2):310-328. PubMed ID: 31605151 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Biodegradation of Phthalic Acid Esters' Derivatives by Plasticizer-Degrading Bacteria ( Zhang H; Zhao C; Na H Int J Environ Res Public Health; 2020 Jul; 17(15):. PubMed ID: 32717867 [TBL] [Abstract][Full Text] [Related]
16. Environmentally Friendly Fluoroquinolone Derivatives with Lower Plasma Protein Binding Rate Designed Using 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation. Hou Y; Zhao Y; Li Y Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32932916 [TBL] [Abstract][Full Text] [Related]
17. Removal and dissipation pathway of typical fluoroquinolones in sewage sludge during aerobic composting. Zhang J; Bao Y; Jiang Y; Liu HT; Xi BD; Wang DQ Waste Manag; 2019 Jul; 95():450-457. PubMed ID: 31351631 [TBL] [Abstract][Full Text] [Related]
18. Designing benign molecules: The influence of O-acetylated glucosamine-substituents on the environmental biodegradability of fluoroquinolones. Lorenz S; Suaifan G; Kümmerer K Chemosphere; 2022 Dec; 309(Pt 2):136724. PubMed ID: 36208803 [TBL] [Abstract][Full Text] [Related]
19. Combined 2D-QSAR, Principal Component Analysis and Sensitivity Analysis Studies on Fluoroquinolones' Genotoxicity. Du M; Zhang D; Hou Y; Zhao X; Li Y Int J Environ Res Public Health; 2019 Oct; 16(21):. PubMed ID: 31661905 [TBL] [Abstract][Full Text] [Related]
20. Law and mechanism analysis of biodegradability of polychlorinated naphthalenes based on principal component analysis, QSAR models, molecular docking and molecular dynamics simulation. Gu W; Li Q; Li Y Chemosphere; 2020 Mar; 243():125427. PubMed ID: 31778917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]