These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 34461464)
61. 3D-QSAR, molecular docking, and molecular dynamics simulation of a novel thieno[3,4-d]pyrimidine inhibitor targeting human immunodeficiency virus type 1 reverse transcriptase. Chu H; He QX; Wang JW; Deng YT; Wang J; Hu Y; Wang YQ; Lin ZH J Biomol Struct Dyn; 2020 Sep; 38(15):4567-4578. PubMed ID: 31760877 [TBL] [Abstract][Full Text] [Related]
63. Effects of fluoroquinolone treatment and group housing of pigs on the selection and spread of fluoroquinolone-resistant Campylobacter. Usui M; Sakemi Y; Uchida I; Tamura Y Vet Microbiol; 2014 Jun; 170(3-4):438-41. PubMed ID: 24629774 [TBL] [Abstract][Full Text] [Related]
64. Fluoroquinolone disposition: identification of the contribution of renal secretory and reabsorptive drug transporters. Mulgaonkar A; Venitz J; Sweet DH Expert Opin Drug Metab Toxicol; 2012 May; 8(5):553-69. PubMed ID: 22435536 [TBL] [Abstract][Full Text] [Related]
65. Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design. Du QS; Gao J; Wei YT; Du LQ; Wang SQ; Huang RB J Chem Inf Model; 2012 Apr; 52(4):996-1004. PubMed ID: 22480344 [TBL] [Abstract][Full Text] [Related]
66. Improved fluoroquinolone detection in ELISA through engineering of a broad-specific single-chain variable fragment binding simultaneously to 20 fluoroquinolones. Wen K; Nölke G; Schillberg S; Wang Z; Zhang S; Wu C; Jiang H; Meng H; Shen J Anal Bioanal Chem; 2012 Jul; 403(9):2771-83. PubMed ID: 22549819 [TBL] [Abstract][Full Text] [Related]
67. Molecular Modeling Study of c-KIT/PDGFRα Dual Inhibitors for the Treatment of Gastrointestinal Stromal Tumors. Keretsu S; Ghosh S; Cho SJ Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33153146 [TBL] [Abstract][Full Text] [Related]
68. Docking-based 3D-QSAR (CoMFA, CoMFA-RG, CoMSIA) study on hydroquinoline and thiazinan-4-one derivatives as selective COX-2 inhibitors. Dowlati Beirami A; Hajimahdi Z; Zarghi A J Biomol Struct Dyn; 2019 Jul; 37(11):2999-3006. PubMed ID: 30035675 [TBL] [Abstract][Full Text] [Related]
69. Biochemical interpretation of quantitative structure-activity relationships (QSAR) for biodegradation of N-heterocycles: a complementary approach to predict biodegradability. Philipp B; Hoff M; Germa F; Schink B; Beimborn D; Mersch-Sundermann V Environ Sci Technol; 2007 Feb; 41(4):1390-8. PubMed ID: 17593747 [TBL] [Abstract][Full Text] [Related]
70. In silico profiling the interaction mechanism of 2,5-diketopiperazine derivatives as oxytocin antagonists. Yang M; Luo J; Zeng Z; Yang L; Xu L; Li Y J Mol Graph Model; 2019 Jun; 89():178-191. PubMed ID: 30904734 [TBL] [Abstract][Full Text] [Related]
71. Design of Novel Chemotherapeutic Agents Targeting Checkpoint Kinase 1 Using 3D-QSAR Modeling and Molecular Docking Methods. Balupuri A; Balasubramanian PK; Cho SJ Curr Comput Aided Drug Des; 2016; 12(4):302-313. PubMed ID: 27585602 [TBL] [Abstract][Full Text] [Related]
72. In silico exploration of aryl sulfonamide analogs as voltage-gated sodium channel 1.7 inhibitors by using 3D-QSAR, molecular docking study, and molecular dynamics simulations. Wang M; Wang Y; Kong D; Jiang H; Wang J; Cheng M Comput Biol Chem; 2018 Dec; 77():214-225. PubMed ID: 30359866 [TBL] [Abstract][Full Text] [Related]
73. A selectivity study of benzenesulfonamide derivatives on human carbonic anhydrase II/IX by 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation. Wang Y; Guo H; Tang G; He Q; Zhang Y; Hu Y; Wang Y; Lin Z Comput Biol Chem; 2019 Jun; 80():234-243. PubMed ID: 31009872 [TBL] [Abstract][Full Text] [Related]
74. Fuzzy risk assessment of modified polychlorinated naphthalenes for enhanced degradation. Gu W; Li Q; Li Y Environ Sci Pollut Res Int; 2019 Aug; 26(24):25142-25153. PubMed ID: 31254193 [TBL] [Abstract][Full Text] [Related]
75. Combined HQSAR method and molecular docking study on genotoxicity mechanism of quinolones with higher genotoxicity. Zhao X; Wang X; Li Y Environ Sci Pollut Res Int; 2019 Dec; 26(34):34830-34853. PubMed ID: 31655981 [TBL] [Abstract][Full Text] [Related]
76. Probing the binding mechanism of substituted pyridine derivatives as effective and selective lysine-specific demethylase 1 inhibitors using 3D-QSAR, molecular docking and molecular dynamics simulations. Wang ZZ; Yang J; Sun XD; Ma CY; Gao QB; Ding L; Liu HM J Biomol Struct Dyn; 2019 Aug; 37(13):3482-3495. PubMed ID: 30175693 [TBL] [Abstract][Full Text] [Related]
77. Dual Glycation-Inflammation Modulation, DPP-IV and Pancraetic Lipase Inhibitory Potentials and Antiproliferative Activity of Novel Fluoroquinolones. Arabiyat S; Kasabri V; Al-Hiari Y; Al-Masri I; Alalawi S; Bustanji Y Asian Pac J Cancer Prev; 2019 Aug; 20(8):2503-2514. PubMed ID: 31450926 [TBL] [Abstract][Full Text] [Related]
78. Molecular determinants of thyroid hormone receptor selectivity in a series of phosphonic acid derivatives: 3D-QSAR analysis and molecular docking. Wang FF; Yang W; Shi YH; Le GW Chem Biol Interact; 2015 Oct; 240():324-35. PubMed ID: 26363198 [TBL] [Abstract][Full Text] [Related]
79. The Molecular Genetics of Fluoroquinolone Resistance in Mycobacterium tuberculosis. Mayer C; Takiff H Microbiol Spectr; 2014 Aug; 2(4):MGM2-0009-2013. PubMed ID: 26104201 [TBL] [Abstract][Full Text] [Related]
80. Identification of potential CRAC channel inhibitors: Pharmacophore mapping, 3D-QSAR modelling, and molecular docking approach. Bhuvaneshwari S; Sankaranarayanan K SAR QSAR Environ Res; 2019 Feb; 30(2):81-108. PubMed ID: 30773908 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]