These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 34461464)
81. Novel rapid room temperature synthesis of conjugated microporous polymer for metal-free photocatalytic degradation of fluoroquinolones. Chakraborty J; Nath I; Jabbour C; Aljammal N; Song S; Kao CM; Heynderickx PM; Verpoort F J Hazard Mater; 2020 Nov; 398():122928. PubMed ID: 32516729 [TBL] [Abstract][Full Text] [Related]
82. Appropriate use of fluoroquinolones in children. Principi N; Esposito S Int J Antimicrob Agents; 2015 Apr; 45(4):341-6. PubMed ID: 25726705 [TBL] [Abstract][Full Text] [Related]
83. Effect of hydrophobic and hydrogen bonding interactions on the potency of ß-alanine analogs of G-protein coupled glucagon receptor inhibitors. Venugopal PP; Das BK; Soorya E; Chakraborty D Proteins; 2020 Feb; 88(2):327-344. PubMed ID: 31443129 [TBL] [Abstract][Full Text] [Related]
84. Occurrence of fluoroquinolones and fluoroquinolone-resistance genes in the aquatic environment. Adachi F; Yamamoto A; Takakura K; Kawahara R Sci Total Environ; 2013 Feb; 444():508-14. PubMed ID: 23291652 [TBL] [Abstract][Full Text] [Related]
85. Biodegradation and adsorption of antibiotics in the activated sludge process. Li B; Zhang T Environ Sci Technol; 2010 May; 44(9):3468-73. PubMed ID: 20384353 [TBL] [Abstract][Full Text] [Related]
86. Insight into the interaction mechanism of human SGLT2 with its inhibitors: 3D-QSAR studies, homology modeling, and molecular docking and molecular dynamics simulations. Dong L; Feng R; Bi J; Shen S; Lu H; Zhang J J Mol Model; 2018 Mar; 24(4):86. PubMed ID: 29511885 [TBL] [Abstract][Full Text] [Related]
87. Environmentally friendly polychlorinated naphthalenes (PCNs) derivatives designed using 3D-QSAR and screened using molecular docking, density functional theory and health-based risk assessment. Gu W; Zhao Y; Li Q; Li Y J Hazard Mater; 2019 Feb; 363():316-327. PubMed ID: 30312928 [TBL] [Abstract][Full Text] [Related]
88. Computational Study and Modified Design of Selective Dopamine D3 Receptor Agonists. Duan X; Zhang X; Xu B; Wang F; Lei M Chem Biol Drug Des; 2016 Jul; 88(1):142-54. PubMed ID: 26851125 [TBL] [Abstract][Full Text] [Related]
89. Molecular modeling studies on series of Btk inhibitors using docking, structure-based 3D-QSAR and molecular dynamics simulation: a combined approach. Balasubramanian PK; Balupuri A; Cho SJ Arch Pharm Res; 2016 Mar; 39(3):328-39. PubMed ID: 26699616 [TBL] [Abstract][Full Text] [Related]
90. Discovery of promising FtsZ inhibitors by E-pharmacophore, 3D-QSAR, molecular docking study, and molecular dynamics simulation. Qiu Y; Zhou L; Hu Y; Bao Y J Recept Signal Transduct Res; 2019 Apr; 39(2):154-166. PubMed ID: 31355691 [TBL] [Abstract][Full Text] [Related]
91. Human Endocrine-Disrupting Effects of Phthalate Esters through Adverse Outcome Pathways: A Comprehensive Mechanism Analysis. Li Y; Yang H; He W; Li Y Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686353 [TBL] [Abstract][Full Text] [Related]
92. Exploring the Potential Hormonal Effects of Tire Polymers (TPs) on Different Species Based on a Theoretical Computational Approach. Wang Y; Yang H; He W; Sun P; Zhao W; Liu M Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050333 [TBL] [Abstract][Full Text] [Related]
93. Triazine Herbicides Risk Management Strategies on Environmental and Human Health Aspects Using In-Silico Methods. Yao T; Sun P; Zhao W Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982765 [TBL] [Abstract][Full Text] [Related]
94. Potential Toxicity Risk Assessment and Priority Control Strategy for PAHs Metabolism and Transformation Behaviors in the Environment. Zhao L; Zhou M; Zhao Y; Yang J; Pu Q; Yang H; Wu Y; Lyu C; Li Y Int J Environ Res Public Health; 2022 Sep; 19(17):. PubMed ID: 36078713 [TBL] [Abstract][Full Text] [Related]
95. Control Strategies of Plastic Biodegradation through Adjusting Additives Ratios Using In Silico Approaches Associated with Proportional Factorial Experimental Design. Zhang H; Hou Y; Zhao W; Na H Int J Environ Res Public Health; 2022 May; 19(9):. PubMed ID: 35565062 [TBL] [Abstract][Full Text] [Related]
96. Molecular design of high-efficacy and high drug safety Fluoroquinolones suitable for a variety of aerobic biodegradation bacteria. Li X; Hou Y; Li Q; Gu W; Li Y J Environ Manage; 2021 Dec; 299():113628. PubMed ID: 34461464 [TBL] [Abstract][Full Text] [Related]
97. Highly biodegradable fluoroquinolone derivatives designed using the 3D-QSAR model and biodegradation pathways analysis. Hou Y; Zhao Y; Li Q; Li Y Ecotoxicol Environ Saf; 2020 Mar; 191():110186. PubMed ID: 31954922 [TBL] [Abstract][Full Text] [Related]
98. Bio-Enhanced Degradation Strategies for Fluoroquinolones in the Sewage Sludge Composting Stage: Molecular Modification and Resistance Gene Regulation. Jin X; Zhao Y; Ren Z; Wang P; Li Y Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805422 [TBL] [Abstract][Full Text] [Related]
99. An adjusted 3D-QSAR model for the combined activity of fluoroquinolones photodegradation and microbial degradation assisted by dynamic simulation and its application in molecular modification. Zhang W; Gu W; Sun R; Zhou M; Han Z; Li Y Ecotoxicol Environ Saf; 2021 Apr; 212():111973. PubMed ID: 33516099 [TBL] [Abstract][Full Text] [Related]