These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34461495)

  • 21. A review on sludge dewatering indices.
    To VH; Nguyen TV; Vigneswaran S; Ngo HH
    Water Sci Technol; 2016; 74(1):1-16. PubMed ID: 27386978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of wastewater sludge dewatering.
    Skinner SJ; Studer LJ; Dixon DR; Hillis P; Rees CA; Wall RC; Cavalida RG; Usher SP; Stickland AD; Scales PJ
    Water Res; 2015 Oct; 82():2-13. PubMed ID: 26003332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation technologies for sludge dewatering.
    Wakeman RJ
    J Hazard Mater; 2007 Jun; 144(3):614-9. PubMed ID: 17349743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compartmentalization of extracellular polymeric substances (EPS) solubilization and cake microstructure in relation to wastewater sludge dewatering behavior assisted by horizontal electric field: Effect of operating conditions.
    Cao B; Zhang W; Du Y; Wang R; Usher SP; Scales PJ; Wang D
    Water Res; 2018 Mar; 130():363-375. PubMed ID: 29253807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unraveling the catalyzing behaviors of different iron species (Fe
    Zhen G; Lu X; Su L; Kobayashi T; Kumar G; Zhou T; Xu K; Li YY; Zhu X; Zhao Y
    Water Res; 2018 May; 134():101-114. PubMed ID: 29407644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rheological characteristics of faecal sludge from VIP latrines and implications on pit emptying.
    Septien S; Pocock J; Teba L; Velkushanova K; Buckley CA
    J Environ Manage; 2018 Dec; 228():149-157. PubMed ID: 30218901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing faecal sludge dewaterability and end-use by conditioning with sawdust and charcoal dust.
    Semiyaga S; Okure MAE; Niwagaba CB; Nyenje PM; Kansiime F
    Environ Technol; 2018 Feb; 39(3):327-335. PubMed ID: 28278090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lignite aided dewatering of digested sewage sludge.
    Thapa KB; Qi Y; Clayton SA; Hoadley AF
    Water Res; 2009 Feb; 43(3):623-34. PubMed ID: 19058831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon-based materials reinforced waste activated sludge electro-dewatering for synchronous fuel treatment.
    Cao B; Wang R; Zhang W; Wu H; Wang D
    Water Res; 2019 Feb; 149():533-542. PubMed ID: 30502739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations.
    Wu B; Dai X; Chai X
    Water Res; 2020 Aug; 180():115912. PubMed ID: 32422413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling sludge-based biochar and electrolysis for conditioning and dewatering of sewage sludge: Effect of char properties.
    Yu H; Zhang D; Gu L; Wen H; Zhu N
    Environ Res; 2022 Nov; 214(Pt 3):113974. PubMed ID: 35952734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electro-dewatering of wastewater sludge: influence of the operating conditions and their interactions effects.
    Mahmoud A; Olivier J; Vaxelaire J; Hoadley AF
    Water Res; 2011 Apr; 45(9):2795-810. PubMed ID: 21453949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving the compression dewatering of sewage sludge through bioacidification conditioning driven by
    Lu Y; Zhang C; Zheng G; Zhou L
    Environ Technol; 2019 Oct; 40(24):3176-3189. PubMed ID: 29649956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of compactibility in liquid-solid separation of wastewater sludges.
    Emir E; Erdincler A
    Water Sci Technol; 2006; 53(7):121-6. PubMed ID: 16752772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shear sensitivity of digested sludge: comparison of methods and application in conditioning and dewatering.
    Dentel SK; Dursun D
    Water Res; 2009 Oct; 43(18):4617-25. PubMed ID: 19665749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced sludge dewatering by electrofiltration. A feasibility study.
    Saveyn H; Huybregts L; Van der Meeren P
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):71-8. PubMed ID: 15954565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Particle size as a driver of dewatering performance and its relationship to stabilization in fecal sludge.
    Ward BJ; Nguyen MT; Sam SB; Korir N; Niwagaba CB; Morgenroth E; Strande L
    J Environ Manage; 2023 Jan; 326(Pt B):116801. PubMed ID: 36435127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of direct waste-activated sludge dewatering benefits and costs in a water resource recovery facility.
    Mentzer C; Drinkwater M; Pagilla KR
    Water Environ Res; 2021 Dec; 93(12):2998-3010. PubMed ID: 34606145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electro-dewatering of wastewater sludge: An investigation of the relationship between filtrate flow rate and electric current.
    Olivier J; Conrardy JB; Mahmoud A; Vaxelaire J
    Water Res; 2015 Oct; 82():66-77. PubMed ID: 26304592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of divalent cation complexation on anaerobically digested enhanced biological phosphorus removal sludge dewatering performance.
    Mangrum CRL; Jenkins D
    Water Environ Res; 2020 May; 92(5):677-688. PubMed ID: 31633854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.