These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34461546)

  • 1. Recycling silicon kerf waste: Use cryolite to digest the surface oxide layer and intensify the removal of impurity boron.
    Chen G; Li Y; Huang L; Peng J; Tang L; Luo X
    J Hazard Mater; 2022 Feb; 423(Pt A):126979. PubMed ID: 34461546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic utilization of industrial solid wastes: Extraction of valuable metals from tungsten leaching residue by photovoltaic sawing waste.
    Li M; Huang L; Chen W; Huang Z; Wang H; Liu C; Luo X; Barati M
    Waste Manag; 2024 Jul; 184():10-19. PubMed ID: 38788498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling and reuse of kerf-loss silicon from diamond wire sawing for photovoltaic industry.
    Yang HL; Liu IT; Liu CE; Hsu HP; Lan CW
    Waste Manag; 2019 Feb; 84():204-210. PubMed ID: 30691894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recycling of silicon from silicon cutting waste by Al-Si alloying in cryolite media and its mechanism analysis.
    Wei D; Kong J; Gao S; Zhou S; Jin X; Jiang S; Zhuang Y; Du X; Xing P
    Environ Pollut; 2020 Oct; 265(Pt A):114892. PubMed ID: 32526632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of silicon from waste PV diamond wire sawing silicon powders: A strategy of Na
    Zou Q; Huang L; Chen W; Chen G; Li Y; Li M; Zhang C; Luo X
    Waste Manag; 2023 Aug; 168():107-115. PubMed ID: 37290339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient recycling of silicon cutting waste by AlSi alloying with the assistance of cryolite.
    Wei D; Kong J; Lyu J; Zhuang Y; Xing P
    Sci Total Environ; 2022 Apr; 816():151580. PubMed ID: 34774957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel strategy for recovery of heavy metals and synthesis of Co-rich alloy from the alkali-treated tungsten residue using photovoltaic silicon kerf waste.
    Li M; Huang B; Chen W; Huang Z; Wang H; Huang J; Liu C; Barati M; Huang L
    J Hazard Mater; 2024 Sep; 477():135384. PubMed ID: 39096631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of metaettringite from blast furnace slag and evaluation of its boron adsorption ability.
    Yamaguchi S; Hongo T
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):15070-15075. PubMed ID: 33230798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Refining Slag Based on Structural Modifications Associated with the Boron Removal for SoG-Si.
    Qian G; Sun Y; Wang D; Wu Z; Wang Z; Ma W
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen removal and silicon recovery from polycrystalline silicon kerf loss by combining vacuum magnesium thermal reduction and hydrochloric acid leaching.
    Yang F; Yu W; Wen J; Jiang W; Emmanuel NJ
    J Environ Manage; 2023 Jul; 338():117829. PubMed ID: 37023602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling of diamond-wire sawing silicon powder by direct current assisted directional solidification.
    Hu Z; Wang G; Li J; Tan Y; Liu Y; Li P
    Waste Manag; 2023 Feb; 157():190-198. PubMed ID: 36563517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective removal of Cr(VI) from aqueous solution based on APTES modified nanoporous silicon prepared from kerf loss silicon waste.
    Yang Z; Chen X; Li S; Ma W; Li Y; He Z; Hu H
    Environ Sci Pollut Res Int; 2020 Apr; 27(10):10899-10909. PubMed ID: 31950422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Al-Si alloy from silicon cutting waste: Enabling oxide surface removing and silicon utilization improving via vacuum sintering.
    Chen G; Li Y; Huang L; Yang Y; Sheng W; Zhang C; Luo X
    Sci Total Environ; 2023 Mar; 863():161038. PubMed ID: 36563759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscosity and Structure of a CaO-SiO
    Shen Y; Chong J; Huang Z; Tian J; Zhang W; Tang X; Ding W; Du X
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31408933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An effective utilization of the slag from acid leaching of coal-waste: preparation of water glass with a low-temperature co-melting reaction.
    Fang L; Duan X; Chen R; Cheng F
    J Air Waste Manag Assoc; 2014 Aug; 64(8):887-93. PubMed ID: 25185391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.
    Teo PT; Anasyida AS; Basu P; Nurulakmal MS
    Waste Manag; 2014 Dec; 34(12):2697-708. PubMed ID: 25242607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of carbon and cryolite from spent carbon anode slag of electrolytic aluminum by flotation based on the evaluation of selectivity index.
    Wang Y; Wang X; Bilal M
    Front Chem; 2022; 10():1025990. PubMed ID: 36300024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of slag composition on the distribution and separation behavior of arsenic between CaO-based slag and liquid copper.
    Park J; Kim HJ; Park JH
    J Hazard Mater; 2022 Aug; 436():129154. PubMed ID: 35739700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient recycling of silicon cutting waste for producing high-quality Si-Fe alloys.
    Wei D; Zhou S; Kong J; Zhuang Y; Xing P
    Environ Sci Pollut Res Int; 2023 May; 30(22):62355-62366. PubMed ID: 36940036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct reduction of copper slag-carbon composite pellets by coal and biochar.
    Zuo Z; Yu Q; Xie H; Yang F; Han Z; Qin Q
    Environ Technol; 2020 Jul; 41(17):2240-2252. PubMed ID: 30582415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.