These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 34461897)
1. High-resolution structure of the amino acid transporter AdiC reveals insights into the role of water molecules and networks in oligomerization and substrate binding. Ilgü H; Jeckelmann JM; Kalbermatter D; Ucurum Z; Lemmin T; Fotiadis D BMC Biol; 2021 Aug; 19(1):179. PubMed ID: 34461897 [TBL] [Abstract][Full Text] [Related]
2. Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC. Ilgü H; Jeckelmann JM; Gapsys V; Ucurum Z; de Groot BL; Fotiadis D Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10358-63. PubMed ID: 27582465 [TBL] [Abstract][Full Text] [Related]
3. Effects of Mutations and Ligands on the Thermostability of the l-Arginine/Agmatine Antiporter AdiC and Deduced Insights into Ligand-Binding of Human l-Type Amino Acid Transporters. Ilgü H; Jeckelmann JM; Colas C; Ucurum Z; Schlessinger A; Fotiadis D Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29558430 [TBL] [Abstract][Full Text] [Related]
4. YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. Gong S; Richard H; Foster JW J Bacteriol; 2003 Aug; 185(15):4402-9. PubMed ID: 12867448 [TBL] [Abstract][Full Text] [Related]
5. Unveiling the Mechanism of Arginine Transport through AdiC with Molecular Dynamics Simulations: The Guiding Role of Aromatic Residues. Krammer EM; Ghaddar K; André B; Prévost M PLoS One; 2016; 11(8):e0160219. PubMed ID: 27482712 [TBL] [Abstract][Full Text] [Related]
6. Molecular mechanism of substrate selectivity of the arginine-agmatine Antiporter AdiC. Krammer EM; Gibbons A; Roos G; Prévost M Sci Rep; 2018 Oct; 8(1):15607. PubMed ID: 30353119 [TBL] [Abstract][Full Text] [Related]
7. Molecular mechanism of pH-dependent substrate transport by an arginine-agmatine antiporter. Wang S; Yan R; Zhang X; Chu Q; Shi Y Proc Natl Acad Sci U S A; 2014 Sep; 111(35):12734-9. PubMed ID: 25136114 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of substrate recognition and transport by an amino acid antiporter. Gao X; Zhou L; Jiao X; Lu F; Yan C; Zeng X; Wang J; Shi Y Nature; 2010 Feb; 463(7282):828-32. PubMed ID: 20090677 [TBL] [Abstract][Full Text] [Related]
9. Structure and mechanism of an amino acid antiporter. Gao X; Lu F; Zhou L; Dang S; Sun L; Li X; Wang J; Shi Y Science; 2009 Jun; 324(5934):1565-8. PubMed ID: 19478139 [TBL] [Abstract][Full Text] [Related]
10. Protonation of glutamate 208 induces the release of agmatine in an outward-facing conformation of an arginine/agmatine antiporter. Zomot E; Bahar I J Biol Chem; 2011 Jun; 286(22):19693-701. PubMed ID: 21487006 [TBL] [Abstract][Full Text] [Related]
11. Projection structure of a member of the amino acid/polyamine/organocation transporter superfamily. Casagrande F; Ratera M; Schenk AD; Chami M; Valencia E; Lopez JM; Torrents D; Engel A; Palacin M; Fotiadis D J Biol Chem; 2008 Nov; 283(48):33240-8. PubMed ID: 18819925 [TBL] [Abstract][Full Text] [Related]
12. A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance. Fang Y; Kolmakova-Partensky L; Miller C J Biol Chem; 2007 Jan; 282(1):176-82. PubMed ID: 17099215 [TBL] [Abstract][Full Text] [Related]
13. Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. Iyer R; Williams C; Miller C J Bacteriol; 2003 Nov; 185(22):6556-61. PubMed ID: 14594828 [TBL] [Abstract][Full Text] [Related]
14. Sided functions of an arginine-agmatine antiporter oriented in liposomes. Tsai MF; Fang Y; Miller C Biochemistry; 2012 Feb; 51(8):1577-85. PubMed ID: 22304019 [TBL] [Abstract][Full Text] [Related]
15. Structure of a prokaryotic virtual proton pump at 3.2 A resolution. Fang Y; Jayaram H; Shane T; Kolmakova-Partensky L; Wu F; Williams C; Xiong Y; Miller C Nature; 2009 Aug; 460(7258):1040-3. PubMed ID: 19578361 [TBL] [Abstract][Full Text] [Related]
16. Structure and function of polyamine-amino acid antiporters CadB and PotE in Escherichia coli. Tomitori H; Kashiwagi K; Igarashi K Amino Acids; 2012 Feb; 42(2-3):733-40. PubMed ID: 21796432 [TBL] [Abstract][Full Text] [Related]
17. Role of transmembrane domain 8 in substrate selectivity and translocation of SteT, a member of the L-amino acid transporter (LAT) family. Bartoccioni P; Del Rio C; Ratera M; Kowalczyk L; Baldwin JM; Zorzano A; Quick M; Baldwin SA; Vázquez-Ibar JL; Palacín M J Biol Chem; 2010 Sep; 285(37):28764-76. PubMed ID: 20610400 [TBL] [Abstract][Full Text] [Related]
18. Substrate recognition and transport behavior analyses of amino acid antiporter with coarse-grained models. Chang S; Hu JP; Lin PY; Jiao X; Tian XH Mol Biosyst; 2010 Dec; 6(12):2430-8. PubMed ID: 20838682 [TBL] [Abstract][Full Text] [Related]
19. Structural studies on the decameric S. typhimurium arginine decarboxylase (ADC): Pyridoxal 5'-phosphate binding induces conformational changes. Deka G; Bharath SR; Savithri HS; Murthy MRN Biochem Biophys Res Commun; 2017 Sep; 490(4):1362-1368. PubMed ID: 28694189 [TBL] [Abstract][Full Text] [Related]
20. Substrate selectivity in arginine-dependent acid resistance in enteric bacteria. Tsai MF; Miller C Proc Natl Acad Sci U S A; 2013 Apr; 110(15):5893-7. PubMed ID: 23530220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]