BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 34462241)

  • 21. Identifying undetected dementia in UK primary care patients: a retrospective case-control study comparing machine-learning and standard epidemiological approaches.
    Ford E; Rooney P; Oliver S; Hoile R; Hurley P; Banerjee S; van Marwijk H; Cassell J
    BMC Med Inform Decis Mak; 2019 Dec; 19(1):248. PubMed ID: 31791325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning methods for the modelling and optimisation of biogas production from anaerobic digestion: a review.
    Ling JYX; Chan YJ; Chen JW; Chong DJS; Tan ALL; Arumugasamy SK; Lau PL
    Environ Sci Pollut Res Int; 2024 Mar; 31(13):19085-19104. PubMed ID: 38376778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study on the quantitative evaluation on the degree of TCM basic syndromes often encountered in patients with primary liver cancer].
    Li DT; Ling CQ; Zhu DZ
    Zhongguo Zhong Xi Yi Jie He Za Zhi; 2007 Jul; 27(7):602-5. PubMed ID: 17717917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in Patient Classification for Traditional Chinese Medicine: A Machine Learning Perspective.
    Zhao C; Li GZ; Wang C; Niu J
    Evid Based Complement Alternat Med; 2015; 2015():376716. PubMed ID: 26246834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A New Method for Syndrome Classification of Non-Small-Cell Lung Cancer Based on Data of Tongue and Pulse with Machine Learning.
    Shi YL; Liu JY; Hu XJ; Tu LP; Cui J; Li J; Bi ZJ; Li JC; Xu L; Xu JT
    Biomed Res Int; 2021; 2021():1337558. PubMed ID: 34423031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Seminal quality prediction using data mining methods.
    Sahoo AJ; Kumar Y
    Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records.
    Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M
    Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid artificial fish particle swarm optimizer and kernel extreme learning machine for type-II diabetes predictive model.
    Kanimozhi N; Singaravel G
    Med Biol Eng Comput; 2021 Apr; 59(4):841-867. PubMed ID: 33738640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of a two-stage fuzzy neural network to a prostate cancer prognosis system.
    Kuo RJ; Huang MH; Cheng WC; Lin CC; Wu YH
    Artif Intell Med; 2015 Feb; 63(2):119-33. PubMed ID: 25576196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic syndrome prediction model using Bayesian optimization and XGBoost based on traditional Chinese medicine features.
    Zheng J; Zhang Z; Wang J; Zhao R; Liu S; Yang G; Liu Z; Deng Z
    Heliyon; 2023 Dec; 9(12):e22727. PubMed ID: 38125549
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine Learning Approaches in Traditional Chinese Medicine: A Systematic Review.
    Chen H; He Y
    Am J Chin Med; 2022; 50(1):91-131. PubMed ID: 34931589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fetal health status prediction based on maternal clinical history using machine learning techniques.
    Akbulut A; Ertugrul E; Topcu V
    Comput Methods Programs Biomed; 2018 Sep; 163():87-100. PubMed ID: 30119860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Smooth Bayesian network model for the prediction of future high-cost patients with COPD.
    Lin S; Zhang Q; Chen F; Luo L; Chen L; Zhang W
    Int J Med Inform; 2019 Jun; 126():147-155. PubMed ID: 31029256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction model of ocular metastasis from primary liver cancer: Machine learning-based development and interpretation study.
    Sun JQ; Wu SN; Mou ZL; Wen JY; Wei H; Zou J; Li QJ; Liu ZL; Xu SH; Kang M; Ling Q; Huang H; Chen X; Wang YX; Liao XL; Tan G; Shao Y
    Cancer Med; 2023 Oct; 12(20):20482-20496. PubMed ID: 37795569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning model for multi-classification of infectious diseases from unstructured electronic medical records.
    Wang M; Wei Z; Jia M; Chen L; Ji H
    BMC Med Inform Decis Mak; 2022 Feb; 22(1):41. PubMed ID: 35168624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification.
    Pota M; Scalco E; Sanguineti G; Farneti A; Cattaneo GM; Rizzo G; Esposito M
    Artif Intell Med; 2017 Sep; 81():41-53. PubMed ID: 28325604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving diagnostic recognition of primary hyperparathyroidism with machine learning.
    Somnay YR; Craven M; McCoy KL; Carty SE; Wang TS; Greenberg CC; Schneider DF
    Surgery; 2017 Apr; 161(4):1113-1121. PubMed ID: 27989606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of weka-based classification algorithms on medical diagnosis datasets.
    Dou Y; Meng W
    Technol Health Care; 2023; 31(S1):397-408. PubMed ID: 37066939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Personal Health Information Inference Using Machine Learning on RNA Expression Data from Patients With Cancer: Algorithm Validation Study.
    Kweon S; Lee JH; Lee Y; Park YR
    J Med Internet Res; 2020 Aug; 22(8):e18387. PubMed ID: 32773372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.