BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34462746)

  • 1. Structure-based design of antisense oligonucleotides that inhibit SARS-CoV-2 replication.
    Li Y; Garcia G; Arumugaswami V; Guo F
    bioRxiv; 2021 Aug; ():. PubMed ID: 34462746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antisense oligonucleotides targeting ORF1b block replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
    Dhorne-Pollet S; Fitzpatrick C; Da Costa B; Bourgon C; Eléouët JF; Meunier N; Burzio VA; Delmas B; Barrey E
    Front Microbiol; 2022; 13():915202. PubMed ID: 36386681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medicinal Chemistry of Antisense Oligonucleotides for Therapeutic Use in SARS-CoV-2: Design Strategies and Challenges for Targeted Delivery.
    Nedaeinia R; Ranjbar M; Goli M; Etebari M; Safabakhsh S; Bayram H; Ferns GA; Tehrani HM; Salehi R
    Curr Med Chem; 2024 Jun; ():. PubMed ID: 38860908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-sensitivity quantification of antisense oligonucleotides for pharmacokinetic characterization.
    Mahajan S; Zhao H; Kovacina K; Lachacz E; Hoxha S; Chan J; Liang M
    Bioanalysis; 2022 May; 14(9):603-613. PubMed ID: 35578971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the expression of anti-apoptotic proteins by antisense oligonucleotides.
    Delihas N
    Curr Drug Targets; 2001 Jun; 2(2):167-80. PubMed ID: 11469717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimated number of off-target candidate sites for antisense oligonucleotides in human mRNA sequences.
    Yoshida T; Naito Y; Sasaki K; Uchida E; Sato Y; Naito M; Kawanishi T; Obika S; Inoue T
    Genes Cells; 2018 Jun; 23(6):448-455. PubMed ID: 29667281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An intranasal ASO therapeutic targeting SARS-CoV-2.
    Zhu C; Lee JY; Woo JZ; Xu L; Nguyenla X; Yamashiro LH; Ji F; Biering SB; Van Dis E; Gonzalez F; Fox D; Wehri E; Rustagi A; Pinsky BA; Schaletzky J; Blish CA; Chiu C; Harris E; Sadreyev RI; Stanley S; Kauppinen S; Rouskin S; Näär AM
    Nat Commun; 2022 Aug; 13(1):4503. PubMed ID: 35922434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryo-electron Microscopy and Exploratory Antisense Targeting of the 28-kDa Frameshift Stimulation Element from the SARS-CoV-2 RNA Genome.
    Zhang K; Zheludev IN; Hagey RJ; Wu MT; Haslecker R; Hou YJ; Kretsch R; Pintilie GD; Rangan R; Kladwang W; Li S; Pham EA; Bernardin-Souibgui C; Baric RS; Sheahan TP; D Souza V; Glenn JS; Chiu W; Das R
    bioRxiv; 2020 Jul; ():. PubMed ID: 32743589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antisense oligonucleotides for the treatment of dyslipidaemia.
    Visser ME; Witztum JL; Stroes ES; Kastelein JJ
    Eur Heart J; 2012 Jun; 33(12):1451-8. PubMed ID: 22634577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic antisense oligonucleotides for movement disorders.
    Doxakis E
    Med Res Rev; 2021 Sep; 41(5):2656-2688. PubMed ID: 32656818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small Drugs, Huge Impact: The Extraordinary Impact of Antisense Oligonucleotides in Research and Drug Development.
    Quemener AM; Centomo ML; Sax SL; Panella R
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug Discovery Perspectives of Antisense Oligonucleotides.
    Kim Y
    Biomol Ther (Seoul); 2023 May; 31(3):241-252. PubMed ID: 36859811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the mutation independent interaction of DNA probes with SARS-CoV-2 variants through a combination of surface-enhanced Raman scattering and machine learning.
    Moitra P; Chaichi A; Abid Hasan SM; Dighe K; Alafeef M; Prasad A; Gartia MR; Pan D
    Biosens Bioelectron; 2022 Jul; 208():114200. PubMed ID: 35367703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2'-modifications and enhances antisense activity.
    Liang XH; Shen W; Sun H; Kinberger GA; Prakash TP; Nichols JG; Crooke ST
    Nucleic Acids Res; 2016 May; 44(8):3892-907. PubMed ID: 26945041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of SARS-CoV-2 by Targeting Conserved Viral RNA Structures and Sequences.
    Hegde S; Tang Z; Zhao J; Wang J
    Front Chem; 2021; 9():802766. PubMed ID: 35004621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonsense-mediated decay as a terminating mechanism for antisense oligonucleotides.
    Ward AJ; Norrbom M; Chun S; Bennett CF; Rigo F
    Nucleic Acids Res; 2014 May; 42(9):5871-9. PubMed ID: 24589581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense oligonucleotides to therapeutically target SARS-CoV-2 infection.
    Qiao Y; Wotring JW; Zhang CJ; Jiang X; Xiao L; Watt A; Gattis D; Scandalis E; Freier S; Zheng Y; Pretto CD; Ellison SJ; Swayze EE; Guo S; Sexton JZ; Chinnaiyan AM
    PLoS One; 2023; 18(2):e0281281. PubMed ID: 36735698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Assessment of the Clinical Performance of GalNAc
    Crooke ST; Baker BF; Xia S; Yu RZ; Viney NJ; Wang Y; Tsimikas S; Geary RS
    Nucleic Acid Ther; 2019 Feb; 29(1):16-32. PubMed ID: 30570431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development.
    Dhuri K; Bechtold C; Quijano E; Pham H; Gupta A; Vikram A; Bahal R
    J Clin Med; 2020 Jun; 9(6):. PubMed ID: 32604776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single-cell map of antisense oligonucleotide activity in the brain.
    Mortberg MA; Gentile JE; Nadaf NM; Vanderburg C; Simmons S; Dubinsky D; Slamin A; Maldonado S; Petersen CL; Jones N; Kordasiewicz HB; Zhao HT; Vallabh SM; Minikel EV
    Nucleic Acids Res; 2023 Aug; 51(14):7109-7124. PubMed ID: 37188501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.